

ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಧಾರವಾಡ ವಿದ್ಯಾಮಂಡಳ (ಎಸ್&ಟಿ) ವಿಭಾಗ

KARNATAK UNIVERSITY, DHARWAD

ACADEMIC (S&T) SECTION

Tele: 0836-2215224 e-mail: academic.st@kud.ac.in Pavate Nagar,Dharwad-580003 ಪಾವಟೆ ನಗರ, ಧಾರವಾಡ್ನ - 580003

NAAC Accredited 'A' Grade 2014 website: kud.ac.in

No. KU/Aca(S&T)/JS/MGJ(Gen)/2024-25 4-36

Date: 11 NOV 2024

ವಿಷಯ: ರಾಷ್ಟ್ರೀಯ ಶಿಕ್ಷಣ ನೀತಿಯನುಸಾರ 2024–25ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಎಲ್ಲ ಸ್ನಾತಕೋತ್ತರ ಪದವಿಗಳಿಗೆ / ಸ್ನಾತಕೋತ್ತರ ಡಿಪ್ಲೋಮಾಗಳಿಗೆ ಪಠ್ಯಕ್ರಮವನ್ನು ಪ್ರಕಟಣೆ ಕುರಿತು. ಉಲ್ಲೇಖ: 1. ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ನಿರ್ಣಯ ಸಂಖ್ಯೆ: 2 ರಿಂದ 9, ದಿ: 08.11.2024. 2. ಮಾನ್ಯ ಕುಲಪತಿಗಳ ಅನುಮೋದನೆ ದಿನಾಂಕ: 11.11.2024.

ರಾಷ್ಟ್ರೀಯ ಶಿಕ್ಷಣ ನೀತಿಯನುಸಾರ 2024–25ನೇ ಶೈಕ್ಷಣಿಕ ಸಾಲಿನಿಂದ ಅನ್ವಯವಾಗುವಂತೆ, ಕರ್ನಾಟಕ ವಿಶ್ವವಿದ್ಯಾಲಯದ ಎಲ್ಲ ಸ್ನಾತಕೋತ್ತರ ಪದವಿಗಳಾದ M.A./ M.Sc / M.Com / MBA / M.Ed 1 ರಿಂದ 4ನೇ ಸೆಮೆಸ್ಟರ್ಗಳಿಗೆ ಮತ್ತು 1 & 2ನೇ ಸೆಮೆಸ್ಟರ್ಗಳ ಸ್ನಾತಕೋತ್ತರ ಡಿಪ್ಲೋಮಾಗಳಿಗೆ ವಿದ್ಯಾವಿಷಯಕ ಪರಿಷತ್ ಸಭೆಯ ಅನುಮೋದನೆಯೊಂದಿಗೆ ಈ ಕೆಳಗಿನಂತೆ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಅಳವಡಿಸಿಕೊಳ್ಳಲಾಗಿದೆ. ಕಾರಣ, ಸಂಬಂಧಪಟ್ಟ ಎಲ್ಲ ಸ್ನಾತಕೋತ್ತರ ವಿಭಾಗಗಳ ಅಧ್ಯಕ್ಷರು / ಸಂಯೋಜಕರು / ಆಡಳಿತಾಧಿಕಾರಿಗಳು / ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳು / ಶಿಕ್ಷಕರು ಸದರಿ ಪಠ್ಯಕ್ರಮಗಳನ್ನು ಅನುಸರಿಸುವುದು ಮತ್ತು ಸದರಿ ಪಠ್ಯಕ್ರಮವನ್ನು ಕ.ವಿ.ವಿ. ಅಂತರ್ಜಾಲ <u>www.kud.ac.in</u> ದಲ್ಲಿ ಭಿತ್ತರಿಸಲಾಗಿದನ್ನು ಸಂಬಂಧಪಟ್ಟ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಸೂಚಿಸುವುದು.

ಅಧಿಸೂಚನೆ

Arts Faculty

Sl.No	Programmes	SI.No	Programmes
1	Kannada	8	MVA in Applied Art
2	English	9	French
3	Folklore	10	Urdu
4	Linguistics	11	Persian
5	Hindi	12	Sanskrit
6	Marathi	13	MPA Music
7	MVA in Painting		

	Faculty of Science & Technology							
Sl.No	Programmes	SI.No	Programmes					
1	Geography	10	M.Sc (CS)					
2	Chemistry	11	MCA					
3	Statistics	12	Marine Biology					
4	Applied Geology	13	Criminology & Forensic Science					
5	Biochemistry	14	Mathematics					
6	Biotechnology	15	Psychology					
7	Microbiology	16	Applied Genetics					
8	Zoology	17	Physics					
9	Botany	18	Anthropology					

-2-

Faculty of Social Science

Sl.No	Programmes	Sl.No	Programmes			
1	Political Science	8	Journalism m & Mass Comm			
2	Public Administration	9	M.Lib. Information Science			
3	History & Archaeology	10	Philosophy			
4	A.I.History & Epigraphy	11	Yoga Studies			
5	Economics	12	MTTM			
6	Sociology	13	Women's Studies			
7	MSW					

Management Faculty

Sl.No	Programmes	Sl.No	Programmes	
1	MBA	2	MBA (Evening)	

Faculty of Commerce								
Sl.No	Programmes	Sl.No	Programmes					
1	M.Com	2	M.Com (CS)					

Faculty of Education

Sl.No	Programmes	Sl.No	Programmes
1	M.Ed	2	M.P.Ed

OEC subject for PG

Sl.No	Programmes	SI.No	Programmes
1	Russian	5	Veman Peetha
2	Kanaka Studies	6	Ambedkar Studies
3	Jainology	7	Chatrapati Shahu Maharaj Studies
4	Babu Jagajivan Ram	8	Vivekanand Studies

PG Diploma

Sl.No	Programmes	Sl.No	Programmes
1	PG Diploma in Chatrapati Shahu Maharaj Studies	2	P.G. Diploma in Women's Studies
3	P.G. Diploma in Entrepreneurial Finance		

ಅಡಕ: ಮೇಲಿನಂತೆ

ಗೆ,

- 1. ಕ.ವಿ.ವಿ. ಸ್ನಾತಕೋತ್ತರ ಅಧ್ಯಕ್ಷರುಗಳಿಗೆ / ಸಂಯೋಜಕರುಗಳಿಗೆ / ಆಡಳಿತಾಧಿಕಾರಿಗಳಿಗೆ / ಮಹಾವಿದ್ಯಾಲಯಗಳ ಪ್ರಾಚಾರ್ಯರುಗಳಿಗೆ
- 2. ಎಲ್ಲ ನಿಖಾಯದ ಡೀನರು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.

ಪ್ರತಿ:

- 1. ಕುಲಪತಿಗಳ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 2. ಕುಲಸಚಿವರ ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ. 3. ಕುಲಸಚಿವರು (ಮೌಲ್ಯಮಾಪನ) ಆಪ್ತ ಕಾರ್ಯದರ್ಶಿಗಳು, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 4. ಅಧೀಕ್ಷಕರು, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ / ಗೌಪ್ಯ / ಜಿ.ಎ.ಡಿ. / ವಿದ್ಯಾಂಡಳ (ಪಿ.ಜಿ.ಪಿಎಚ್.ಡಿ) ವಿಭಾಗ/ ಸಿಸ್ಟಮ್ ಅನಾಲೆಸಿಸ್ಟ್ / ಸಂಬಂಧಿಸಿದ ಪದವಿಗಳ ವಿಭಾಗಗಳು, ಪರೀಕ್ಷಾ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 5. ನಿರ್ದೇಶಕರು, ಕಾಲೇಜು ಅಭಿವೃದ್ಧಿ / ವಿದ್ಯಾರ್ಥಿ ಕಲ್ಯಾಣ ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ.
- 6. ನಿರ್ದೇಶಕರು, ಐ.ಟಿ. ವಿಭಾಗ, ಕ.ವಿ.ವಿ. ಧಾರವಾಡ ಇವರಿಗೆ ಕ.ವಿ.ವಿ. ಅಂರ್ತಜಾಲದಲ್ಲಿ ಪ್ರಕಟಿಸುವುದು.

KARNATAK UNIVERSITY, DHARWAD

PG Programme

M.Sc. Applied Genetics

Curriculum Structure

With Effect from 2024-25

As Per NEP - 2020

KarnatakUniversity,Dharwad

M.Sc..in APPLIED GENETICS Effective from 2024-25

Karnatak University, Dharwad

M.Sc..in **APPLIED GENETICS** Effective from **2024-25**

	e					T-4-1		Marks			
Sem.	Type ofCours	Theory/ Practical	Course Code	CourseTitle	Instructi 10 onhour/ how week ser		Duration ofExam	Formati ve	Summat ive	Total	Credits
	DSC-1	Theory	A1GEN001T	BIOLOGICAL CHEMISTRY (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-2	Practical	A1GEN001P	BIOLOGICAL CHEMISTRY (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
I	DSC-3	Theory	A1GEN002T	GENETICS AND CYTOGENETICS (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-4	Practical	A1GEN0012P	GENETICS AND CYTOGENETICS (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-5	Theory	A1GEN003T	GENERAL MICROBIOLOGY (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-6	Practical	A1GEN003P	GENERAL MICROBIOLOGY (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-7	Theory	A1GEN004T	BIOPHYSICAL AND BIOCHEMICAL TECHNIQUES (Theory)	04	60hrs	02hrs	20	80	100	04
	DSC-8	Practical	A1GEN004T	BIOPHYSICAL AND BIOCHEMICAL TECHNIQUES (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
								120	480	600	24
	DSC-9	Theory	A2GEN001T	DEVELOPMENTAL AND EVOLUTIONARY GENETICS (THEORY)	04	60hrs	02hrs	20	80	100	04
П	DSC-10	Practical	A2GEN001P	DEVELOPMENTAL AND EVOLUTIONARY GENETICS (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-11	Theory	A2GEN002T	MOLECULAR BIOLOGY (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-12	Practical	A2GEN002P	MOLECULAR BIOLOGY (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-13	Theory	A2GEN003T	INTERMEDIARY METABOLISM (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-14	Practical	A2GEN003P	INTERMEDIARY METABOLISM (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	OEC - 1	Theory	A2GEN201T	RECOMBINANT DNA TECHNOLOGY AND MOLECULAR CLONING (Theory)	04	60hrs	02hrs	20	80	100	04

								110	440	550	22
								Marks			
Sem.	Type ofCourse	Theory/Pr actical	Course Code	CourseTitle	Instructi onhour/w eek	Total hours sem	Duration ofExam	Formati ve	Summ ative	Total	Credits
	DSC-9	Theory	A3GEN001T	GENETIC ENGINEERING (THEORY)	04	60hrs	02hrs	20	80	100	04
ш	DSC-10	Practical	A3GEN001P	GENETIC ENGINEERING (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-11	Theory	A3GEN002T	MICROBIAL GENETICS AND TECHNOLOGY (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-12	Practical	A3GEN002P	MICROBIAL GENETICS AND TECHNOLOGY (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-13	Theory	A3GEN003T	HUMAN GENETICS AND GENETIC COUNSELLING (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-14	Practical	A3GEN003P	HUMAN GENETICS AND GENETIC COUNSELLING (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	OEC - 1	Theory	A3GEN202T	MOLECULAR DIAGNOSIS AND MOLECULAR MEDICINE (THEORY)	04	60hrs	02hrs	20	80	100	04
								110	440	550	22
	DSC-9	Theory	A4GEN001T	FOURTH SEMESTER BIOINFORMATICS (THEORY)	04	60hrs	02hrs	20	80	100	04
IV	DSC-10	Practical	A4GEN001P	BIOINFORMATICS (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-11	Theory	A4GEN002T	IMMUNOGENETICS AND IMMUNOTECHNOLOGY (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-12	Practical	A4GEN002P	IMMUNOGENETICS AND IMMUNOTECHNOLOGY (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	DSC-13	Theory	A4GEN003T	GENETICS OF CROP IMPROVEMENT (THEORY)	04	60hrs	02hrs	20	80	100	04
	DSC-14	Practical	A4GEN003P	GENETICS OF CROP IMPROVEMENT (PRACTICAL)	04	56 hrs	03hrs	10	40	50	02
	Project - 1	Practical	A4GEN004P	PROJECT WORK				25	125	150	06
								115	485	600	24

GENERAL INSTRUCTIONS

- 1. One credit is equal to 1 hour theory teaching per week.
- 2. One credit is equal to 2 hour practical teaching per week.
- 3. One credit is equal to 15 hours theory syllabus per semester (1 Unit is equal to 15 Hours)
- 4. One credit is equal to 30 hours practical syllabus per semester (1 credit practical is equal to 2 hours per week)

A. Workload for theory subjects

- 1. There shall be 16 hrs/week workload for Assistant Professor
- 2. There shall be 14 hrs/week workload for Associate Professor/ Professor/Senior Professor.
- 3. There shall be 2hrs/week workload relaxation for Guiding Ph.D. students

B. Workload for practical subjects

- 1. There shall be 20 hrs/week workload for Assistant Professor
- 2. There shall be 18 hrs/week workload for Associate Professor/ Professor/Senior Professor.
- 3. There shall be 2hrs/week workload relaxation for Guiding Ph.D. students

C. Workload for practical batches

1. A batch of 10-12 students shall have 1 teacher

D. Workload for Project

- 1. Students for projects shall be preferably guided by permanent faculty for atleast10 students by sharing equally among the permanent faculty. If remained excess shall be allotted to other teacher's onroll on temporary basis.
- 2. If there are no permanent faculty, the students shall be distributed among the temporary teachers onroll.
- 3. There shall be maximum of 4 hrs/week workload for guiding the students for project work irrespective of number of students.

E. Allotment of Specialization

While allotting specialization in 3rd and 4th semester, minimum of 10 students shall have to select the specialization.

F. Marks and Conduct of Examination

- 1. Generally, 20% weightage for Formative assessment and 80% weightage for Summative assessment
- 2. Upto 2 credits equal to 50 marks (10 marks Formative assessment and 40 marks summative assessment)
- 3. 3-4 credits equal to 100 marks(20 marks Formative assessment and 80 marks summative assessment)
- 4. 5-6 credits equal to 150 marks(30 marks Formative assessment and 120 marks summative assessment)
- 5. Example for 100 marks out of which 20 marks for Formative assessment i.e., Formative Assessment shall be in two stages: 10 marks for 8th week and 10 marks for 14thweek of every semester.

- 6. 75% attendance is mandatory for every course(paper). No marks are reserved for attendance. If the candidate fails to fulfils 75% attendance in any one of the course (paper) in the given semester, such candidate is not eligible to appear for examination in all the papers and candidate has to get the readmission for such semester.
- 7. Passing criteria: Candidate has to score minimum 40% in summative examination and fulfill 40% of the maximum marks including Formative assessment marks. For example: for 80 marks summative examination, candidate has to score minimum of 32 marks (40%) and should score cumulatively 40 marks including formative assessment.
- 8. Candidate has to score 40% as above in all the courses to pass the semester end examination.
- 9. Marks obtained from the OEC shall not be considered for award of CASH PRIZE/RANK/GOLD MEDAL.

G. Project/Internship assessment

- 1. Formative Assessment : Project/Internship assessment carrying 20 marks out of 100 marks Interaction with the project supervisor and submission of progress reports = 10 + 10 marks
- 2. Summative Assessment : Project/Internship assessment carrying 80 marks out of 100 marks
 - a. Project Report : 35
 - b. Presentation : 20
 - c. Viva-voce : 25

FIRST SEMESTER A1GEN001T: BIOLOGICAL CHEMISTRY (THEORY)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 1	Theory	4	4	60	2	20	80	100
No 1									

Course Outcomes: After successful completion of the course, the student will be able to

- CO1: To offer detailed knowledge of biomolecules for living systems
- CO2: To provide basic concepts of structural organization of biomolecules
- CO3: To learn about biomolecular interactions in biochemical processes
- CO4: To acquire knowledge on physicochemical properties of biomolecules
- CO5: To understand the structure of DNA and RNA and their types

Syllabus Course 01(Theory): BIOLOGICAL CHEMISTRY	Total Hrs: 60
Unit-I	15 Hours
Chemical Bonds : Covalent, coordinate, electrostatic, hydrogen, ionic bonds, Van der Waals forces, hydrophilic and hydrophobic interactions, functional groups.	
Properties of Water : Structure and properties of water, water as a solvent,	
its importance in biological systems, importance of pH, pK, and buffer,	
Henderson-Hasselbalch equation and its application.	
Unit-II	15 Hours
Carbohydrates : Classification, methods of structure elucidation. Structure and stereochemistry of carbohydrates. Derivatives of monosaccharides: amino sugars, deoxy sugars, glycosides. Structure of disaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose, glycogen, dextrin, hemicellulose, pectins, lignins, agar-agar, chitin, hyaluronic acid, heparin, chondroitin sulphate, peptidoglycan).	

Proteins: Amino acids—structure, reactions, and physiological properties.	
Peptides: peptide bond, structure determination, isolation, and synthesis.	
Protein structure (primary, secondary, tertiary), denaturation, isolation,	
purification, and chemical reactions.	
Unit-III	15 Hours
Lipids: Classification, fatty acid chemistry, triacylglycerides, drying of	
oils, saponification and iodine values of oils and fats. Structure of	
phospholipids (lecithin, cephalin) and sphingolipids.	
Terpenes : Structure of cholesterol, classification of terpenes, chemistry of	
farnesol, phytol, squalene, and carotenes	
Unit-IV	15 Hours
Nucleotides: Chemistry of nucleic acids, purines, pyrimidines, nucleosides,	
nucleotides, and DNA/RNA structures.	
Vitamins: Chemistry, classification (fat and water-soluble), biological	
functions.	
Antibiotics: Structure and chemistry of penicillin, streptomycin,	
chloramphenicol, tetracyclines.	
Alkaloids: General introduction, medicinally important alkaloids.	
Pigments : Chlorophylls, heme, phenolics, and tannins.	
Metal Ions in Biomolecules: Examples and their roles.	
1	

A1GEN001P: BIOLOGICAL CHEMISTRY (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course No 2	DSC 2	Practical	2	4	56	3	10	40	50

Course Outcomes: After successful completion of the course, the student will be able to

CO1: Acquire hands on experience to perform general and confirmatory qualitative tests For identification of Carbohydrates, Proteins and amino acids, Lipids etc.

CO2: Get hands on experience on various biochemical techniques such as Paper chromatography, Thin layer chromatography, and handling Colorimeter and Spectrophotometer

CO3: Estimate the quantity of various biomolecules from living system

- 1. Preparation of buffers: citrate, Tris-HCl, and phosphate buffers.
- 2. Determination of pK of proteins and amino acids.
- 3. Estimation of inorganic phosphorus using the Fiske-Subbarow method.
- 4. Sorenson-Formol titration for estimation of % purity of glycine.
- 5. Isolation and estimation of proteins by Biuret method
- 6. Isolation and estimation of proteins by FCR method
- 7. Determination of molecular weight of a protein by gel filtration or SDS-PAGE.
- 8. Estimation of total sugars/reducing sugars.
- 9. Estimation of DNA by DNS method
- 10. Estimation of DNA/RNA.
- 11. Extraction and estimation of plant pigments.
- 12. Extraction of lipids and fatty acid composition (TLC or GLC).
- 13. Determination of saponification value of oils
- 14. Determination of iodine number of fats.

(New experiments may be introduced each year)

- 1. Nelson, D.I., & Cox, M.M., Lchninger, A.L. (2000). *Principles of Biochemistry*, 3rd Ed., McMillan Press.
- 2. Mathews, C.K., Van Holde, K., & Ather, K. (2000). *Biochemistry*, 5th Ed., Benjamin/Cummings Publishing.
- 3. Voet, D., & Voet, J. (2000). Biochemistry, John Wiley & Sons.
- 4. Stryer, L. (2000). Biochemistry, 5th Ed., W.H. Freeman.
- 5. Roberts, J.D., & Caserio, M.C. (1974). *Basic Principles of Organic Chemistry*, 1st Ed., W.A. Benjamin, Inc.
- 6. BloomField, V.A., & Harrington, I.L.E. (1995). Biophysical Chemistry, W.H. Freeman.
- 7. Sadasivam, S., & Manikam, A. (1992). *Biochemical Methods for Agricultural Sciences*, Wiley Eastern Ltd.
- 8. Jayaraman, J. (1968). Laboratory Manual for Biochemistry, Wiley Eastern Ltd.
- 9. Plummer, D.T. (1977). Introduction to Practical Biochemistry, Tata McGraw Hill.
- 10. Palanivelu, D. (2001). *Analytical Biochemistry and Separation Techniques*, A Laboratory Manual for B.Sc. and M.Sc. Students.

A1GEN002T: GENETICS AND CYTOGENETICS (THEORY)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 3	Theory	4	4	60	2	20	80	100
No 3									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Define and identify Mendel's laws, gene interactions, linkage, cell cycle and chromosome morphology and structure

CO2: Identify violation in mendelism and explain the principles

CO3: have an deep insight in principles of linkage and recombination and its application

CO4: learn the application of cytogenetic principles in plant and animal improvement

Syllabus Course 03(Theory): GENETICS AND CYTOGENETICS	Total Hours: 60
Unit- I	15 Hours
History of Genetics: Genetics in biology. Role of genetics in agriculture,	
industry, and medicine, impact on society. Overview of Mendelian genetics.	
Application of laws of probability (product rule, sum rule, binomial	
property). Chi-square test and its application in analysis of genetic data.	
Extension of Mendelism: Basis of dominant and recessive mutation.	
Visible, sterile, and lethal mutations. Genotype to phenotype, effect of	
environment on phenotype development—penetrance and expressivity,	
phenocopies. Overview of gene interaction and modifying genes. Pleiotropy.	
Multiple alleles—Eye color in fruit fly, coat color in locus in maize. Testing	
gene mutation for allelism complementation.	
Unit-II	15 Hours
Linkage, Recombination, and Gene Mapping in Eukaryotes:	
Recombination frequency and map function. Linkage studies in fruit fly and	
maize. Detection of linkage by test cross. Two-point cross, three-point cross,	
and four-point cross and gene mapping. Coincidence and interference.	
Recombination frequency and genetic map distance, chiasma frequency, and	
genetic map distance, genetic distance and physical distance. Evolutionary	

	r
significance of recombination. Genetic control of recombination.	
Cytogenetic and physical maps using molecular markers.	
Sex Determination : Autosomes and sex chromosomes—fruit fly, birds, <i>Melandrium</i> , and humans. Sex-linked, sex-limited, and sex-influenced	
characters Environmental determination of sex Dosage compensation of X-	
linked genes. Molecular mechanism of sex determination.	
Inheritance of Quantitative Traits:Continuous and discontinuous	
variations. Polygenic inheritance, genetic variance, heritability—narrow	
sense and broad sense genetic advance under selection	
sense and broad sense, genetic advance under selection.	
Unit-III	15 Hours
Extrachromosomal Inheritance: Non-Mendelian inheritance, variegation	
in leaves of higher plants Correns' studies in <i>Mirabilis ialana</i> Extra-nuclear	
in Chloring and a material showing uningeneral inheritance	
genes in <i>Chiamyaomonas</i> inutants snowing uniparentai internance,	
chloroplast, and mitochondrial genome.	
Eukaryotic Chromosome: Chromatin, its chemical nature, macromolecular	
organization. Nucleosome structure, chromosome model, centromeric DNA,	
telomere organization Law of DNA constancy and C-value paradox	
teromere organization, zuv or Drareonbuney and C value paradom	
Mechanism of Cell Division: Mitotic apparatus, cytokinesis, chromosome	
movement. Overview of cell cycle, molecular mechanism of regulating	
mitotic events, cell cycle control in mammalian cells. Mutation causing loss	
of cell cycle control.	
Meiotic Process: Stages chromosome pairing and chiasma formation	
Melouler mochanism of moombination sympatonemal complex and	
Molecular mechanism of recombination, synaptonemal complex, and	
recombination nodule. Spermatogenesis and oogenesis. Biochemical studies	
with oocytes, eggs, and early embryos.	
Unit-IV	15 Hours
Hanleid y: Occurrence production detection majorie breading behavior	10 110015
Haploidy . Occurrence, production, detection, melosis, breeding behavior,	
use in genetic analysis and plant breeding.	
Polyploidy : Autopolyploidy—origin, induction, cytological, genetic, and	
breeding behavior. Allopolyploidy—cytogenetics, genome analysis,	
synthesis of new general Polynloidy in the animal kingdom	
synthesis of new genera. Polyploidy in the animal kingdom.	
synthesis of new genera. Polyploidy in the animal kingdom.	
synthesis of new genera. Polyploidy in the animal kingdom.Aneuploidy: Hyperploids—trisomics and tetrasomics—origin, meiotic	
synthesis of new genera. Polyploidy in the animal kingdom. Aneuploidy : Hyperploids—trisomics and tetrasomics—origin, meiotic behavior, and uses. Hyperploidy in animals and humans. Hypoploidy—	
 synthesis of new genera. Polyploidy in the animal kingdom. Aneuploidy: Hyperploids—trisomics and tetrasomics—origin, meiotic behavior, and uses. Hyperploidy in animals and humans. Hypoploidy—monosomies and nullisomies—source, cytological behavior, genetics, and 	
synthesis of new genera. Polyploidy in the animal kingdom. Aneuploidy : Hyperploids—trisomics and tetrasomics—origin, meiotic behavior, and uses. Hyperploidy in animals and humans. Hypoploidy— monosomies and nullisomies—source, cytological behavior, genetics, and their uses in gene mapping.	

Chromosome Engineering: Transfer of whole genome, genome
reconstruction, chromosome sorting, transfer of individual chromosomes,
substitution of alien chromosome arm.
Cytogenetic Basis of Apomixis: Classification, detection, embryological,
cytological, and genetic basis. Apomixis in plant breeding.

A1GEN0012P: GENETICS AND CYTOGENETICS (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC4	Practical	2	4	56	3	10	40	50
No 4									

Course Outcomes: After successful completion of the course, the student will be able to,

- CO1: Able to collect, handle and culture *Drosophila*
- CO2: learn the application of fruitfly in understanding Mendelian principles

CO3: able to prepare slides to study karyological events

- 1. Preparation of fruit fly media and handling of fruit flies.
- 2. Identification of adult fruit fly morphology and life cycle study.
- 3. Examination of mutant flies and gene interactions.
- 4. Analysis of segregation and independent assortment in fruit flies.
- 5. Linkage studies in fruit flies.
- 6. Preparation of media and culture methods for *Neurospora* and *Sordaria*.
- 7. Tetrad analysis in *Neurospora* and *Sordaria*.
- 8. Cytological methods: Chromosome counting and banding techniques.
- 9. Analysis of polytene chromosomes, sex chromosomes.
- 10. Structural and numerical changes in chromosomes.
- 11. Induction of polyploidy and characterization of autoploids.

(New experiments may be introduced each year)

References:

- 1. Ashbumer M, Golic K.G.and Scott HawleyR.(2005),Drosphilaa Laboratory Handbook, 2 Edn. Coij Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- 2. Khanna V. K,(2006), Laboratory Manual Plant Cytogenetics. Kalyani Publishers.
- 3. BatchMargret J. (1997), AgtCytogentics Laboratory Manual. Lippincott Williams and Wilkins Publishers.
- 4. Griffiths, et al. (2000). *An Introduction to Genetic Analysis*, 7th Ed., W.H. Freeman, London.
- 5. Strickberger, M.W. (1995). *Genetics*, 3rd Edn., Prentice-Hall Inc., London.
- 6. Tamrin, R.M. (2000). Principles of Genetics, 6th Ed., W.M.C. Brown Publications Co.,

London.

7. Snustad, D.P., & Simmons, M.J. (2003). *Principles of Genetics*, 3rd Edn., John Wiley & Sons Inc., N.Y.

8. Alberts, B., Bray, D., Lewin, J., Raff, M., Roberts, K., & Watson, J.D. (1994). *Molecular Biology of The Cell*, 3rd Edn.

9. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). *Molecular Cell Biology*, Freeman W.H. and CO., N.Y.

10. Kaip, G. (1996). *Cell and Molecular Biology: Concept and Experiments*, John Wiley & Sons Inc., N.Y.

- 11. Gupta, P.K. (1965). Cytogenetics, Rastogi Publication, Meerut.
- 12. Schulz-Schaeffer, J. (1980). Cytogenetics: Plants, Animals and Humans, Springer-Verlag, N.Y.
- 13. Lewis, W.H. (1980). *Polyploidy: Biological Relevance*, Plenum Press, N.Y.
- 14. Burnham, C.J.L. (1962). Discussion in Cytogenetics, Bergress, Minneapolis.

A1GEN003T: GENERAL MICROBIOLOGY (THEORY)

Course No	Type of course	Practical/Theory	Credits	Instruction hour per	Total No. of Lectures/Hours	Duration of Exam	Formative Assessment	Summative Assessment	Total Marks
				week	/ Semester		Marks	Marks	
Course No 5	DSC5	Theory	4	4	60	2	20	80	100

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: learn basic principles of microbiology

CO2: understand the techniques of sterilization, media composition and cultivation of microbes

CO3: understand the role of microbes in health, agriculture, environment and industry

Syllabus Course 05(Theory): GENERAL MICROBIOLOGY	Total Hours: 60
Unit-I	15 Hours
Introduction : Scope and development of microbiology, comparative study of prokaryotic and eukaryotic microorganisms. Study of structure of bacteria, genetic elements, ribosomes, membranes, cell envelope, capsule, flagella, pili, and endospores.	
Classification of Microorganisms : Nomenclature and study of different types of microorganisms. Characterization of microorganisms: bacteria, fungi, actinomycetes, algae, protozoa, mycoplasmas, chlamydiae, rickettsiae.	
Methods of Sterilization : Principles, physical and chemical sterilizing agents, pasteurization, and disinfection; batch and continuous sterilization of media and air.	
Nutrition and Culture Media: Nutritional requirements and classes of microorganisms. Types of culture media: selective, differential, indicator, and transport media.	
Unit-II	15 Hours
Isolation of Pure Cultures : Different methods of isolation and pure cultures— spread plate, pour plate, and streak plate methods. Enumeration of cell numbers, enrichment culture techniques.	
Cultivation of Bacteria : Methods of inoculation and culturing—streak, stab,	

 lawn or carpet culture, liquid culture. Growth and reproduction in microorganisms, growth curve of bacteria, factors affecting the growth curve, synchronous and diauxic growth. Methods of growth measurement: plating, turbidometry, metabolic products, nitrogen content. Preservation of microbial cultures—stabbing glycerol. Identification of Bacteria: Morphological identification, staining methods: simple staining, capsule, cell wall, flagella, and endospore staining. Dischemical identification waves 	
fermentation, and H ₂ S production.	
Unit-III	15 Hours
 Habitats of Microorganisms: Microbes of air, water, soil, food, and normal human body flora. Viruses: Physiochemical properties and classification of viruses. Isolation, cultivation, and assay of viruses. Bacteriophages: odd and even T phages, ΦX174. Structure, mode of infection, replication, and assembly of T even phage. Lytic and lysogenic cycles. Viroids and prions. Clinical Microbiology: Infection and intoxication, endotoxins and exotoxins, air, water, and foodborne diseases in humans and domestic animals—causative agents, epidemiology, and diagnosis. A. Microbial antibiotics: curative and prophylactic measures. B. Monoclonal antibodies: production and application. C. Insulin production by genetically engineered microbes (GEM). D. Vaccines: killed, attenuated, and recombinant vaccines. E. Integrated pest control management. 	
Unit-IV	15 Hours
 Food Microbiology : A . Microbes in the spoilage of food and milk and their prevention. B. Microbes in the production of food-cheese, vitamins, amino acids, organic acids and in alcoholic beverages. C. Microbes as food: Single Cell protein from algae, bacteria, yeast and fungi as mushroom. Environmental and Fuel Microbiology: Environmental pollution: Agricultural domestic and industrial wastes A. Microbes in liquid and solid waste management B. Sacchrirification, Silage production and composting microbes in degradation of pesticides and Xenobiotics ; Microbial fertilizers; biological control of pest by B.thurengiensis. C. Metal leaching and extraction, microbes as non conventional energy source, Biogas production, Methane and butanol and hydrogen gases; Alcohol production 	

A1GEN003P: GENERAL MICROBIOLOGY (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC6	Practical	2	4	56	3	10	40	50
No 6									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: able to prepare culture media, isolate microbes and prepare pure cultures

CO2: perform various staining and biochemical procedures to identify bacteria

- CO3: carryout growth curve analysis of bacteria
 - 1. Preparation of nutrient broth and nutrient agar slants, and sterilization.
 - 2. Culture of microorganisms using various methods.
 - 3. Isolation of microorganisms from soil samples
 - 4. determination of the number of colony-forming units and scoring colony morphology
 - 5. Isolation of pure culture techniques.
 - 6. Preparation of stains and mordants and destaining solutions
 - 7. Simple staining using crystal violet, safranin, methylene blue and Negative staining
 - 8. Differential staining procedures: endospore staining, flagellar staining, cell wall staining, capsular staining
 - 9. Identification of bacteria by biochemical tests.
 - 10. Life cycle of bacteria, fungi, actinomycetes, blue-green algae, and Clostridium.
 - 11. Antibiotic sensitivity test, LD-50, potency of drug/antibiotic.
 - 12. Study of the growth curve of *E. coli* cells—effect of pH, temperature, salt concentration, nutrient, and agitation on growth phases.
 - 13. Clinical microbiology techniques: tests for infection and intoxication, toxin detection.
 - 14. Isolation of Phages by chloroform precipitation

(New experiments may be introduced each year)

- 1. Sadasivam S. and Manikam A. (1992): Biochemical Method. Willey Eastern Limited New Delhi.
- 2. Pelczar, M.J., Chan, E.O.S.A., & Kreig, N.R. (1993). Microbiology. McGraw Hill Inc., N.Y.
- 3. Atlas, R.M. (1998). *Microbiology, Fundamentals and Applications*, 2nd ed. McMillan Publications Co., N.Y.
- 4. Prescott, L.M., Harley, J.P., & Klein, D.A. (1996). Microbiology. Wm C. Brown Publ., N.Y.
- 5. Holt, J.S., Kreig, N.R., Sneath, P.H.A., & Williams, S.T. (1994). *Bergey's Manual of Systematic Bacteriology*, 9th ed. William and Wilkins, Baltimore.
- 6. Alexander, M. (1997). Introduction to Soil Microbiology. John Wiley & Sons Inc., New York.
- 7. Alexopoulos, C.J., & Mims, C.W. (1979). *Introductory Mycology*. Wiley Eastern Limited, New Delhi.
- 8. Ram, R.C. (2007). Microbial Diversity Modern Trends. Mittal Publications, New Delhi.
- 9. Cappuccino, J.G., & Sherman, N. (1999). *Microbiology: A Laboratory Manual*. Addison-Wesley.

A1GEN004T: BIOPHYSICAL AND BIOCHEMICAL TECHNIQUES (Theory)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC7	Theory	4	4	60	2	20	80	100
No 7									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand the characters of biomolecules

CO2: have an insight about the principles of techniques like microscopy and microtomy

CO3: Learn the principle of separation techniques and analytical techniques

Syllabus Course 07 (Theory):BIOPHYSICAL AND	Total Hours: 60
BIOCHEMICAL TECHNIQUES	
Unit-I	15 Hours
Introduction: Scope of biophysics, physical laws, interaction of living	
and non-living matter, chemical foundations of biophysics.	
Characterization of biological molecules:Hydrodynamic properties of	
biomolecules-viscosity, diffusion, osmosis, partial specific volume, and	
Donnan effect.	
Microscopy: Principles of microscopy-light, phase contrast,	
fluorescence, X-ray, UV, transmission and scanning electron	
microscope, confocal microscope, and atomic force microscope.	
Preparation of specimen for microscopy: Microtome technique,	
fixation, embedding, sectioning, and staining for light and electron	
microscopy.	
Unit-II	15 Hours
Chromatography:Paper, thin-layer, gas-liquid, column, gel filtration,	
ion exchange, affinity, HPLC, RPLC.	
Centrifugation:Preparative and analytical centrifuges, rotors,	
sedimentation analysis, rate-zonal and equilibrium gradient	
centrifugation, ultracentrifugation, subcellular isolation.	
Electrophoresis: Types of electrophoresis—paper and gel (starch,	

acrylamide, and agarose) electrophoresis, capillary, disc, slab vertical gel electrophoresis, submarine horizontal agarose gel electrophoresis, gradient gel electrophoresis, isoelectric focusing, immune- electrophoresis, pulsed-field gel electrophoresis, blotting of nucleic	
acids and proteins from gel to solid supports.	
Unit-III	15 Hours
Concentration of macromolecules: Salting out with ammonium sulfate,	
flash evaporation, lyophilization, pressure dialysis, reverse dialysis,	
hollow fiber membrane, and reverse osmosis.	
Analytical methods: Spectroscopy, photobiophysics, electromagnetic	
spectrum of light, simple theory of absorption of light by molecules,	
Beer-Lambert's law, types of detectors. UV-Visible spectrophotometry,	
infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy,	
flame photometry, atomic absorption, plasma emission, mass	
spectrometry, ESR and NMR spectroscopy, MALDI-TOF MS, LC-MS,	
ORD and CD, X-ray diffraction, and X-ray crystallography.Biological	
importance of LASERS, microwaves, and radiations.	
Unit-IV	15 Hours
Radioisotope tracer techniques: Nature and types of radioactivity,	
decay units, preparation of labeled biological compounds, detection and	
measurement of radioactivity (GM counter, scintillation counter,	
Cerenkov radiation, autoradiography, photographic emulsion, gamma-	
ray counter), quench correction, safety measures in handling	
radioisotopes, biological uses of radioisotopes.	
Automatic analyzers: For amino acids, protein sequencers, nucleotide	
sequencing systems, peptide and polynucleotide synthesizers.	
Methods of detection and quantization of macromolecules on gels:Staining procedures for proteins, nucleic acids, carbohydrates, pigments. Zymograms, densitometric methods, and transilluminators.	

A1GEN004T: BIOPHYSICAL AND BIOCHEMICAL TECHNIQUES (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC8	Practical	2	4	56	3	10	40	50
No 8									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: purify biomolecules from the natural sources

CO2: have an insight about the principles of techniques like microscopy and microtomy

CO3: Learn the principle of separation techniques and analytical techniques hands on

- 1. Purification of peptides/proteins: salt precipitation, dialysis, column purification.
- Molecular weight determination of peptides/proteins by gel filtration chromatography/SDS-PAGE.
- 3. Blotting of nucleic acids/proteins.
- 4. Extraction of lipids and analysis of fatty acid composition.
- 5. Estimation of hormones by HPLC.
- 6. Analysis of elements using AAS/Flame photometer/Kjeldahl method.
- 7. Use of light, phase contrast, fluorescence, and electron microscopy for examining specimens.
- 8. Chromatography techniques: paper, thin-layer, and column chromatography.
- 9. Gel filtration chromatography for protein purification.
- 10. Spectrophotometric techniques for quantifying biomolecules.
- 11. Use of UV-Visible and fluorescence spectroscopy for analysis.
- 12. Use of GM counters and scintillation counters for measuring radioactivity.
- 13. Autoradiography techniques for detecting radioactive isotopes.
- 14. Quantitative analysis of macromolecules on gels using staining and densitometry.

(New experiments may be introduced each year)

- 1. Boyer, R.F. (2001). Modern Experimental Biochemistry, 3rd ed. Benjamin/Cummings Pub. Co.
- 2. Jayaraman, J. (1998). Laboratory Manual of Biochemistry. Wiley Eastern Limited, New Delhi.
- 3. Work, T.S., & Burdon, R.G. Laboratory Techniques in Biochemistry and Molecular Biology.
- 4. Skoog, D.A., West, D.M., Holler, F.J., & Crouch, S.R. (2004). *Fundamentals of Analytical Chemistry*. Thomson Asia Pte Ltd., Singapore.
- 5. Cantor, C.R., & Schimmel, P.R. (2004). *Biophysical Chemistry*, Parts I, II, and III. W.H. Freeman and Company, New York.
- 6. Wilson, K., & Walker, J. (2005). *Principles and Techniques of Biochemistry and Molecular Biology*, 6th ed. Cambridge University Press, USA.
- 7. Sadasivam, S., & Manikam, A. (1992). *Biochemical Methods*. Wiley Eastern Limited, New Delhi.

SECOND SEMESTER A2GEN001T. DEVELOPMENTAL AND EVOLUTIONARY GENETICS

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC9	Theory	4	4	60	2	20	80	100
No 9									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand the principles of animal development

CO2: understand the principles of plant development

CO3: understand the principles of evolution and evolutionary processes

Syllabus Course 09(Theory): DEVELOPMENTAL AND	Total Hours: 60
EVOLUTIONARY GENETICS	
Unit-I	15 Hours
History and Basic Concepts: Model organisms for genetic analysis of	
development: Insect - Drosophila, amphibians - Xenopus levis, birds -	
chick, mammals - mouse, identifying developmental genes.	
Patterning of the Vertebrate Body Plan: Axes and germ layers -	
settling of the body axes, mesoderm and early nervous system - somite	
formation and patterning, neural induction and the role of the organizer.	
Development of Fruit Fly Body Plan: Maternal gene activity,	
polarization of body axes during oogenesis, zygotic gene activity in	
early embryo, segmentation - activation of pair rule genes, selector and	
homeotic genes, segment polarity genes and compartments.	
Unit-II	15 Hours
Genetics of Embryonic Development in Plant: Early events in	
embryogenesis, gene expression in embryo, genetics of embryogenesis	
- embryolethal mutants, apical-basal axis mutants, segment deletion	
mutant, radial axis mutants. Cell fate maps in embryo development.	
Genetics of Seedling Development: Photomorphogenesis, shoot	
development, leaf development, and root development.	

Genetics of Flowering, Seed and Fruit Development: Transition	
from vegetative to floral development, ABC model and homeotic	
genes, mad box genes. Genetics of anther development and pollen	
formation. Seed development - Endosperm, endosperm balance	
number, maturation stage, LEA protein and control of seed dormancy	
and germination. Fruit development and control of ripening. Genetics	
of aging and senescence in animals and plants.	
Unit-III	15 Hours
Theories of Organic Evolution: Lamarckism and neo-Lamarckism,	
Darwinism and neo-Darwinism. Gene frequencies and equilibrium.	
Gene pool and gene frequency. Hardy-Weinberg law, attainment of	
equilibrium at 2 or more loci and sex linkage. Estimation of	
equilibrium frequencies in natural population - Codominance and	
dominance in natural population, sex linkage in natural populations.	
Changes in Gene Frequencies: Mutation rate, selection, fitness,	
gametic and zygotic selection, heterozygous advantage. Unstable	
equilibrium, equilibrium between mutation and selection. Mutation rate	
and equilibrium frequencies estimation, migration, random genetic	
drift.	
Inbreeding and Heterosis : Inbreeding and assortative mating, inbreeding coefficient from genotypes and pedigrees. Effect of inbreeding on genotype frequencies, phenotypic mean and variance. Cross breeding and heterosis.	
Unit-IV	15 Hours
Genetic Structure of Population: Optimum phenotype and selection	
pressure, types of selection, Fischer's theorem on natural selection,	
genetic variability in natural populations, canalization, genetic	
homeostasis, genetic load and genetic drift.	
Genetics of Evolutionary Process: Race formation, isolating mechanisms, modes of speciation.	
Genetic Polymorphism: Types of polymorphism, maintaining	
polymorphisms, sampling the genome, multilocus selection models,	
neutral alleles, molecular evolutionary clock.	
Molecular Phylogenies and Evolution: Amino acid sequences DNA	
and repetitive DNA sequences DNA-DNA hybridization restriction	
enzyme sites Molecular polymorphism and its evolutionary	
implications. Nucleotide sequence homologies, rate of molecular	

changes, regulating genes, and evolutionary consequences.

A2GEN001P: DEVELOPMENTAL AND EVOLUTIONARY GENETICS (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC10	Practical	2	4	56	3	10	40	50
No 10									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Learrn the techniques

CO2: understand the principles of plant development

CO3: understand the principles evolution and evolutionary processes

- 1. Fixation of plant and animal tissues, preparation of paraffin blocks and microtomy. Staining and microscopic observations.
- 2. Types of eggs and cleavage.
- 3. Development of Arabidopsis, fruit fly, fish, frog, and mammals.
- 4. Mounting of imaginal discs in fruit fly.
- 5. Demonstration of cell death.
- 6. Gametogenesis, embryogenesis, and seed development.
- 7. Root and shoot differentiation.
- 8. Estimation of allelic frequency in natural population PTC loci.
- 9. Genetic variation in natural population beak shape, color pattern in lady beetle, flower color variation, mimicry butterfly and orchid flowers, Metroglyph analysis.
- 10. Estimation of genetic diversity in natural population.
- 11. Mechanism of speciation Polyploidy.
- 12. Genetic analysis of inbreeding.

(New experiments may be introduced each year)

References:

1. Bhojawani, S.S., and Bhatnagar, S.P. (2000): The Embryology of Angiosperms, Vikas

Publication House, New Delhi.

- 2. Carlson, B.M. (1996): Pattern's Foundation of Embryology, McGraw Hill Inc., N.Y.
- 3. Hartl, D.L. (1988): A Primer of Population Genetics, Sinauer, Sunderland, USA.
- 4. Howell, S.H. (1998): *Molecular Genetics of Plant Development*, Cambridge University Press, Cambridge.
- 5. Lewin, B. (2001): Genes VII, Oxford University Press, Oxford.
- 6. Li, W., and Graur (1990): *Fundamentals of Molecular Evolution*, Sinauer Associates, Sunderland, USA.
- 7. Price, P.W. (1996): Biological Evolution, Saunders Pub., Philadelphia.
- 8. Russo, V.E.A., Brody, S., Cove, D., and Okkolenghi (1992): *Development: The Molecular Genetic Approach*, Springer Verlag, Berlin.
- 9. Snustad, D.P., and Simmons, M.J. (2003): *Principles of Genetics*, 3rd Edn., John Wiley and Sons, Inc., N.Y.
- 10. Strickberger, M.W. (1996): Evolution, 2nd Edn., Jones and Bartlett Pub., London.
- 11. Strickberger, M.W. (1996): Genetics, 3rd Edn., Prentice Hall of India, New Delhi.
- 12. Tamarin, R.H. (2000): Principles of Genetics, 6th Edn., W.C. Brown Publishers, London.
- 13. Wolpert, L., et al. (2002): *Principles of Development*, 2nd Ed., Oxford University Press, Oxford.
- 14. Johnson, D.A. (1940): Plant Microtechnique, McGraw Hill, New York.
- 15. Vasudevarao, K. (2004): *Developmental Biology, A Modern Synthesis*, Oxford Publishing Co. Pvt. Ltd., New Delhi.
- 16. Subramanium, T. (2002): Developmental Biology, Narosa Publication.
- 17. Kalthoff, K. (1996): Analysis of Biological Development, McGraw Hill, Inc., New York.
- 18. Strickberger, M.W. (1996): Evolution, Jones and Bartlett Publishers, Sudbury, Massachusetts.
- 19. Gilbert, Scott F. (1996): Developmental Biology, Sunderland, Sinauer Associates.
- 20. Miglani, G.S. (2006): *Developmental Genetics*, I.K. International Publishing House, Pvt. Ltd., Bangalore.

A2GEN002T: MOLECULAR BIOLOGY

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC11	Theory	4	4	60	2	20	80	100
No 11									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand structure of the genetic material

CO2: understand the principles replication, transcription and translation of genetic material

CO3: understand the principles gene expression regulation and its application

Syllabus Course 09(Theory):MOLECULAR BIOLOGY	Total Hours:60
Unit-I	15 Hours
Genetic Material: Discovery, Overview - DNA - Chemical composition	
and molecular structure, polymorphism in DNA structure. RNA -	
Chemical composition and macromolecular structure and types of RNA.	
DNA Replication : Overview, enzymes of replication. Replication	
apparatus - Primosomes and Replisomes. Mechanism of Replication.	
Continuous and discontinuous DNA synthesis, supercoiling and	
termination of replication. Eukaryotic DNA Replication, telomere length	
and aging.	
Unit-II	15 Hours
Transcription: Central dogma, role of DNA in protein synthesis,	
general features of RNA synthesis. Prokaryotic transcription RNA	
polymerase, mechanism of transcription. Eukaryotic transcription - RNA	
polymerases, transcription factor.	
Post-transcription Modification of mRNA : Capping and	
Polyadenylation. Split genes- intron, exons, and gene splicing. Reverse	
transcription.	
Translation : Genetic code - Properties of genetic code, deciphering of	
genetic code, initiation and termination codons, degeneracy of genetic	
code, quasi-universal nature of genetic code, wobble hypothesis and	
evolution of genetic code. Protein synthesis - ribosomes, amino acid	
activation, initiation, elongation, and termination in prokaryotes and	

eukaryotes, post-translational modification of proteins. Inhibitors of translation	
Unit-III	15 Hours
Mutagenesis: Spontaneous mutations. Mutation frequency, physical	
mutagens, ionizing radiations and non-ionizing radiations,	
radiosensitivity. Chemical mutagens - mutagenic compounds, mode of	
action, molecular basis of mutation. In vitro site-directed mutagenesis.	
DNA Repair Mechanism : DNA damage, dark repair, light repair, post-	
replication repair, SOS repair systems. Mobile genetic elements in	
significance	
significance.	
Regulation of Gene Expression in Prokaryotes: Operon models - Lac	
operon inducible system, cap protein and catabolite repression, His	
operon repressible system, Trp operon attenuation control. Post-	
transcriptional control - feedback inhibition and protein degradation.	
Regulation of Gene Expression in Eukaryotes : Short-term regulation,	
neat shock proteins, activators, enhancers, and silencers. Hormonal regulations DNA methylation Z DNA Molecular control of	
transcription gene expression and chromosome organization	
euchromatin and heterochromatin and gene amplification Role of RNA	
in gene expression: siRNA, antisense RNA, hairpin RNA, and RNAi.	
Unit-IV	15 Hours
Genome Organization: Genome size, cot analysis, DNA constancy and	
enigma. DNA complexity, coding and non-coding sequences, LINES	
and SINES and multigene families.	
Conomics: Introduction structural genemics extegenetic maps EISH	
SNP. STR. AFLP. RFLP. RAPD, manning quantitative traits using	
QTL, construction of chromosome-specific library, positional cloning -	
chromosome walk and jumps.	
Functional Genomics: Gene expression sequences, DNA microarray	
and genome evolution.	

A2GEN002P. MOLECULAR BIOLOGY (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 12	Practical	2	4	56	3	10	40	50
No 12									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Isolate and quantify genetic material from various sources

CO2: Perform mutagenesis and mutant characterization

CO3: Learn regulation of gene expression by substrates

- 1. Isolation of genomic DNA from plants,
- 2. Isolation of genomicDNA from microbes
- 3. Isolation of genomic DNA from mammals.
- 4. Quantification of DNA by UV-spectrophotometer.
- 5. Agarose gel electrophoresis and quality check of isolated DNA.
- 6. Isolation and quantification of RNA by UV-spectrophotometer.
- 7. Electrophoresis of RNA using denaturing gels.
- 8. Induction and characterization of mutations using chemical/physical mutagens in plants
- 9. Induction and characterization of mutations using chemical/physical mutagens in Microbes
- 10. Induction and demonstration of heat shock proteins.
- 11. Mutation and DNA repair system in microorganisms.
- 12. Substrate induced enzyme synthesis in *E. coli*.

(New experiments may be introduced each year)

- 1. Freifelder, D. (1999): Molecular Biology, Narosa Pub. House, New Delhi.
- 2. Griffiths, et al. (2000): An Introduction to Genetic Analysis, Freeman W.H. and Company, NY.
- 3. Karp, G. (1996): *Cell and Molecular Biology: Concepts and Experiments*, John Wiley and Sons, Inc., N.Y.
- 4. Lewin, B. (2001): Genes VII, Oxford University Press, Oxford.

- 5. Lodish, H., Berk, A., Zipursky, S.L., Matsudaiva, P., Baltimore, D., and Darnell, J. (2000): *Molecular Cell Biology*, W.H. Freeman and Co.
- 6. Sambrook, J., Fritsch, E.F., and Maniatis, T. (2000): Molecular Cloning, CSHL Press, NY.
- 7. Snustad, D.P., and Simmons, M.J. (2002): *Principles of Genetics*, 3rd Edn., John Wiley and Sons, N.Y.
- 8. Twyman, R.M. (1998): Advanced Molecular Biology, Viva Book Pvt., New Delhi.
- 9. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, E.F. Fritsch, and T. Maniatis. Cold Spring Harbor Laboratory Press, New York, 2000.
- 10. DNA Cloning: A Practical Approach, D.M. Glover and B.D. Hames, IRL Press, Oxford, 1995.
- 11. *Molecular and Cellular Methods in Biology and Medicine*, P.B. Kaufman, W. Wu, D. Kim, and L.J. Cseke, CRC Press, Florida, 1995.
- 12. DNA Science: A First Course in Recombinant Technology, D.A. Mickloss and G.A. Freyer, Cold Spring Harbor Laboratory Press, New York, 1990.

A2GEN003T: INTERMEDIARY METABOLISM (THEORY)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 13	Theory	4	4	60	2	20	80	100
No 13									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Understand the bioenergetics principles

CO2: have an insight of metabolism of biomolecules

CO3: Learn the regulation of signal transduction

Syllabus Course 13 (Theory):INTERMEDIARY METABOLISM	Total Hours: 60
Unit-I	15 Hours
Bioenergetics: Free energy change in biological transformations,	
thermodynamic principles in biology, redox potential, high energy	
compounds, brief account of enzymes and coenzymes involved in	
biological oxidations, organization of respiratory electron transport	
system, mechanism of oxidative phosphorylation, biological energy	
transducers, chemiosmotic generation of ATP.	
Metabolism of Carbohydrates: Glycolysis, Citric acid cycle, glyoxylate	
cycle, gluconeogenesis, pentose phosphate pathway, glycogenolysis and	
glycogen synthesis, biosynthesis of lactose and starch. Energetics and	
regulations of the pathways.	
Unit-II	15 Hours
Metabolism of Amino Acids: Hydrolysis of proteins, proteases,	
biosynthesis of amino acids and their catabolism (deamination,	
decarboxylation, transamination). Coordinated control of amino acid	
metabolism, formation of ammonia and urea, nitrogen cycle, biological	
nitrogen fixation (symbiotic and non-symbiotic).	
Metabolism of Lipids: Lipid hydrolysis, lipases, outlines of schemes of	
oxidation of fatty acids (saturated and unsaturated), biosynthesis of fatty	
acids, biosynthesis of cholesterol, phospholipids and glycolipids,	
leukotrienes and eicosanoids, prostaglandins and thromboxanes. Lipid	
peroxidation, metabolism of ketone bodies. Regulation of lipid	
metabolism	

Unit-III	15 Hours
Metabolism of Heme: Biosynthesis and degradation of heme porphyrin,	
regulation, porphyries.	
Metabolism of Nucleotides: Biosynthesis of purine and pyrimidine	
nucleotides by de novo and salvage pathways. Regulation inhibitors of	
nucleotide biosynthesis. Degradation of nucleotides.	
Signal Transduction: Inter and intra cellular signalling: Signal molecules	
- Protein and non-protein signals. Organisms involved in the synthesis	
and release, transport, target cells/tissues. Signal receptors, distribution	
interaction between the signal receptors, signal transducing elements, and	
the mechanism of transduction. Role of second messengers, such as	
calcium, cAMP, cGMP, phosphatidyl inositol phosphatases. A general	
view of plant signals, phytohormones, calcium, phosphatidyl inositol, and	
their mechanisms.	
Unit-IV	15 Hours
Photosynthesis: Introduction, photosynthesis pigments, photosystems,	
cyclic and non-cyclic electron flow and photophosphorylation, CO2	
fixation by Calvin Cycle, C3, C4 and CAM pathways, photorespiration.	
Biochemistry of Hormones: Classification, structure and functions of	
hormones. Biosynthesis of steroid hormones, thyroid hormones, hormone	
receptors, second messengers, signal transduction, signal component	
receptors, mechanism of signal transduction.	

A2GEN003P: INTERMEDIARY METABOLISM (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total	
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks	
				week	/ Semester		Marks	Marks		
Course	DSC 14	Practical	2	4	56 3		10	40	50	
No 14										

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: identify carbohydrate by semimicro qualitative analysis

CO2: isolate and purify biomolecules from its source

- CO3: quantify biomolecular concentration in a given sample
 - 1. Qualitative analysis of carbohydrates.
 - 2. Qualitative analysis of proteins.
 - 3. Qualitative analysis of amino acids.
 - 4. Qualitative analysis of lipids.
 - 5. Estimation of mineral elements (Na/P/K/Ca/Fe).
 - 6. Constructive of maltose calibration curve
 - 7. Determination of salivary amylase activity.
 - 8. Analysis of inhibition of salivary amylase activity
 - 9. Extraction and estimation of Thiamine or Niacin
 - 10. Extraction and estimation of Ascorbic acid or Vitamin A.
 - 11. Estimation of lycopene.
 - 12. Estimation of Chlorophyll
 - 13. Estimation of plant hormone IAA / Ethylene.

(New experiments may be introduced each year)

- 1. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000): *Molecular Cell Biology*, W.H. Freeman and Co.
- 2. Voet, D., and Voet, J. (2000): Biochemistry, John Wiley and Sons.
- 3. Stryer, L. (2000): Biochemistry, 5th Ed., W.H. Freeman and Co., New York.
- 4. Moran, L.A., Sceimgeour, K.G., Horton, H.R., Ochs, R.S., and Rawn, J.D. (2003): *Biochemistry*, 3rd Ed., Neil Patterson Publishing, Prentice Hall.

- 5. Lehninger, A. (2000): Principles of Biochemistry, C.B.S. Publishers.
- 6. Mathews, C.K. and Van Holde, K. (1996): Biochemistry.
- 7. S. Sadavasivam and A. Manikam (1992): *Biochemical Methods for Agricultural Sciences*, Wiley Eastern Ltd, New Delhi.
- 8. Jayaraman, J. (1968): Laboratory Manual for Biochemistry, Wiley Eastern Ltd, New Delhi.
- 9. Plummer, D.T. (1977): *An Introduction to Practical Biochemistry*, Tata McGraw Hill, Bombay.
- 10. Dr. Palanivelu (2001): Analytical Biochemistry and Separation Techniques A Laboratory Manual for B.Sc. and M.Sc. Students.

A2GEN201T: RECOMBINANT DNA TECHNOLOGY AND MOLECULAR CLONING (Theory)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	of Exam Assessment		Marks
				week	/ Semester		Marks	Marks	
OEC 1	OEC 1	Theory	4	4	60	2	20	80	100

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand the basic principles of genetic engineering

CO2: understand the principles of gene cloning and transfer

CO3: learn the methods gene expression analysis in transgenics

Syllabus OEC -1 (Theory):RECOMBINANT DNA TECHNOLOGY	Total Hours: 60
AND MOLECULAR CLONING	
Unit-I	15 Hours
Cloning Basics: Cloning, Overview of the procedure, Gene library,	
Hybridization, molecular cloning, construction of DNA library,	
Library screening, Expression libraries, Restriction mapping, RFLP,	
DNA sequencing.	
Purification and Separation of nucleic acids: Extraction and Purification of nucleic acids, Detection and Quantitation of Nucleic acids, Gel Electrophoresis.	
Cutting and Joining DNA:Restriction Endonucleases, Ligation, Alkaline	
Phosphate, Double Digest, Modification of Restriction Fragments ends,	
Other Ways of joining DNA Molecules.	
Unit-II	15 Hours
Vectors: Plasmid vectors, Vectors based on the lambda	
Bacteriophage, Cosmids, M13 vectors, Expression vectors, Vectors	
for cloning and expression in Eukaryotic cells, Super vectors : YACs and BACs.	
Amplifying DNA: PCR and Cell based DNA Cloning – The importance of DNA Cloning, PCR : basic features and application, Principles of Cell-based DNA Cloning, Cloning System for amplifying different sized fragments, Cloning System for producing single-stranded and mutated DNA.	

Nucleic Acid Hybridization: Principle and application - Preparation	
of nucleic acid probes, Principle of Nucleic acid hybridization,	
Nucleic acid hybridization assays, and microarrays.	
TT. 1/ TTT	1.5 11
Unit-III	15 Hours
Gene Recombination and Gene transfer : Bacterial Conjugation,	
Fransformation, Transduction, Episomes, Plasmids, Microinfection,	
Electroporation Microprojectile Shot Gun method Ultrasonication	
inosome fusion Microlaser	
Mutation: Site-directed mutagenesis and Protein engineering: Primer	
extension for site directed mutation, PCR based site directed	
nutagenesis, Random mutagenesis, Use of Phage display techniques	
to facilitate the selection of mutant peptides. Gene shuffling,	
production of chimeric proteins.	
Unit-IV	15 Hours
Analyzing game ampropriane (a) Departure Canas. Commenter yead	
Analyzing gene expression: (a) Reporter Genes - Commonly used	
reporter genes, Analysis of gene regulation Purification and detection	
eporter genes, Analysis of gene regulation Purification and detection ags.	
reporter genes, Analysis of gene regulation Purification and detection rags.	
Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection ags. Analysis at the level of gene transcription: Northern blot, in situ	
 Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection rags. Analysis at the level of gene transcription: Northern blot, in situ lybridization, Rnase protection assay, RTPCR. 	
Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection ags. Analysis at the level of gene transcription: Northern blot, in situ hybridization, Rnase protection assay, RTPCR.	
 Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection rags. Analysis at the level of gene transcription: Northern blot, in situ hybridization, Rnase protection assay, RTPCR. Analysis at the level of Translation: Western blot, in situ analysis, ELICA analysis at the level of the situation of	
 Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection tags. Analysis at the level of gene transcription: Northern blot, in situ hybridization, Rnase protection assay, RTPCR. Analysis at the level of Translation: Western blot, in situ analysis, ELISA, protein gel electrophoresis, Antibody production. 	
 Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection tags. Analysis at the level of gene transcription: Northern blot, in situ hybridization, Rnase protection assay, RTPCR. Analysis at the level of Translation: Western blot, in situ analysis, ELISA, protein gel electrophoresis, Antibody production. 	
 Analyzing gene expression: (a) Reporter Genes - Commonly used reporter genes, Analysis of gene regulation Purification and detection tags. Analysis at the level of gene transcription: Northern blot, in situ hybridization, Rnase protection assay, RTPCR. Analysis at the level of Translation: Western blot, in situ analysis, ELISA, protein gel electrophoresis, Antibody production. 	

- 1. Strickberger, M.W. (1995). Genetics, 3rd Edn., Prentice-Hall Inc., London.
- 2. Tamrin, R.M. (2000). *Principles of Genetics*, 6th Ed., W.M.C. Brown Publications Co., London.
- 3. Snustad, D.P., & Simmons, M.J. (2003). *Principles of Genetics*, 3rd Edn., John Wiley & Sons Inc., N.Y.
- 4. Alberts, B., Bray, D., Lewin, J., Raff, M., Roberts, K., & Watson, J.D. (1994). *Molecular Biology of The Cell*, 3rd Edn.
- 5. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000).

Molecular Cell Biology, Freeman W.H. and CO., N.Y.

6. Kaip, G. (1996). *Cell and Molecular Biology: Concept and Experiments*, John Wiley & Sons Inc., N.Y.

THIRD SEMESTER A3GEN001T: GENETIC ENGINEERING (THEORY)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of Duration		Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 15	Theory	4	4	60 2		20	80	100
No 15									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand the concepts of genetic engineering

CO2: Have an insight about the tools and techniques in molecular cloning

CO3: learn the principles of Biohazards and biosafety regulations in genetic engineering

SyllabusCourse 15(Theory):GENETIC ENGINEERING	Total Hours: 60
Unit-I	15 Hours
General Introduction to the Concept of Genetic Engineering:	
Milestones in genetic engineering; isolation of enzymes, DNA	
sequencing: synthesis and mutation, detection and separation, cloning,	
gene expression. Patenting of life forms, genetic engineering guidelines.	
Restriction Endonucleases: Modification, methylases, and other	
enzymes needed in genetic engineering.	
Cloning Vectors: Plasmids and plasmid vectors, phages and phage	
vectors, phagemids, cosmids, artificial chromosome vectors (YAC,	
BAC, HAC), animal virus-derived vectors - SV40 and retroviral vectors.	
Unit-II	15 Hours
Molecular Cloning: Recombinant DNA techniques, construction of	
genomic DNA and cDNA libraries, screening of recombinants.	
Expression strategies for heterologous genes.	
DNA Analysis: Labeling of DNA and RNA probes. Southern blotting	
and fluorescence in situ hybridization, DNA fingerprinting, chromosome	

walking.	
Unit-III	15 Hours
Analysis of Gene Expression: Northern and Western blotting, gel	
retardation technique, DNA footprinting, primer extension, S1 mapping,	
reporter assays, RT-PCR, and microarray.	
DNA Sequencing : Chemical synthesis of oligonucleotides; techniques	
of in vitro mutagenesis, site-directed mutagenesis, gene replacement,	
and gene targeting. Polymerase chain reaction (PCR) and its	
applications.	
Unit-IV	15 Hours
Unit-IV Use of Transposons in Genetic Analysis: Transposon tagging,	15 Hours
Unit-IVUse of Transposons in Genetic Analysis: Transposon tagging, transposon engineering and its use in identification and isolation of	15 Hours
Unit-IVUse of Transposons in Genetic Analysis: Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis.	15 Hours
Unit-IV Use of Transposons in Genetic Analysis:Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis.	15 Hours
Unit-IVUse of Transposons in Genetic Analysis: Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis.Applications of Genetic Engineering: Transgenic animals, production	15 Hours
Unit-IVUse of Transposons in Genetic Analysis: Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis.Applications of Genetic Engineering: Transgenic animals, production of pharmaceuticals, gene therapy, disease diagnosis.	15 Hours
Unit-IVUse of Transposons in Genetic Analysis: Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis.Applications of Genetic Engineering: Transgenic animals, production of pharmaceuticals, gene therapy, disease diagnosis.	15 Hours
Unit-IVUse of Transposons in Genetic Analysis: Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis.Applications of Genetic Engineering: Transgenic animals, production of pharmaceuticals, gene therapy, disease diagnosis.Biosafety Regulation: Biosafety, Biohazard, Physical and biological	15 Hours
 Unit-IV Use of Transposons in Genetic Analysis:Transposon tagging, transposon engineering and its use in identification and isolation of genes and functional analysis. Applications of Genetic Engineering: Transgenic animals, production of pharmaceuticals, gene therapy, disease diagnosis. Biosafety Regulation: Biosafety, Biohazard, Physical and biological containment. 	15 Hours

A3GEN001P: GENETIC ENGINEERING (PRACTICAL)

Course No	Type of course	Practical/Theory	Credits	Instruction hour per	Total No. of Lectures/Hours	Duration of Exam	Formative Assessment	Summative Assessment	Total Marks	
				week	/ Semester		Marks	Marks		
Course No 16	DSC 16	Practical	2	4	56	3	10	40	50	

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: prepare competent cells for genetic transformation

CO2: clone the gene in suitable vector and transform in to the host

CO3: analyze the gene product

- 1. Bacterial culture and antibiotic selection media.
- 2. Preparation of competent cells.
- 3. Isolation of plasmid DNA.
- 4. Quantification of plasmid DNA.
- 5. Agarose gel electrophoresis and restriction mapping of DNA.
- 6. Construction of restriction map of plasmid DNA.
- 7. Cloning in plasmid vectors.
- 8. Preparation of single-stranded DNA template.
- 9. DNA sequencing.
- 10. Gene expression in E. coli and analysis of gene product.
- 11. Amplification of GAPDH gene
- 12. Expression analysis genes by RTPCR
- 13. Reporter gene assay (GUS/CAT/a-GAL).
- 14. Gene silencing (Demonstration using a teaching kit).

(New experiments may be introduced each year.)

- 1. Molecular Cloning: A laboratory manual, J. Sambrook, E.F. Fritsch, and T. Maniatis. Cold Spring Harbor Laboratory Press, New York, 2000.
- 2. DNA Cloning: A practical approach, D.M. Glover and B.D. Hames, IRL Press, Oxford, 1995.
- 3. Molecular and Cellular Methods in Biology and Medicine, P.B. Kaufman, W.Wu, D. Kim, and L.J. Cseke, CRC Press, Florida, 1995.

A3GEN002T: MICROBIAL GENETICS AND TECHNOLOGY (THEORY)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total	
No	course			hour per Lectures/Hou		of Exam	Assessment	Assessment	Marks	
				week	/ Semester		Marks	Marks		
Course	DSC 17	Theory	4	4	60	2	20	80	100	
No 17										

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Understand the principles of metabolic regulation in microbes

CO2: Understand basics of reproduction and recombination in microbes

CO3:	Have an in	nsight a	about	genetic	impr	ovement	of	microb	es for	indus	trial	applic	cations
		<u> </u>											

Syllabus Course 16(Theory):MICROBIAL GENETICS AND TECHNOLOGY	Total
	Hours: 60
Unit-I	15 Hours
Metabolic Regulation in Bacteria: Microbial metabolism, catabolism, EMP, PP, ED,	
PK pathways; TCA cycle, respiration, and fermentation. Anabolism-biosynthesis of	
nucleic acids, proteins, peptidoglycan, and lipids. Metabolic regulation: Modification of	
enzyme activity, control of enzyme synthesis, mechanism of general regulation.	
Secondary metabolism and its control, non-ribosomal peptide synthesis, auto regulation,	
end-product regulation, nitrogen and phosphate regulation. Use of metabolic inhibitors	
and tracer techniques in the investigation of metabolic pathways.	
Mutagenesis in Bacteria: Isogenic strains, types of mutants—auxotrophic and antibiotic	
mutants; mutagenic agents and mechanism of action of mutagens; isolation and	
characterization of mutants, replica plating; reversion and suppression.	
Unit-II	15 Hours
Plasmid Biology: Types of plasmids, isolation and purification of plasmid DNA, transfer	
of plasmid DNA, in vitro plasmid transfer, plasmid replication.	
Transposable Genetic Elements: IS elements, detection of transposition, transposition	
mechanism, and excision of transposons, phage mu, transposition and evolution.	
Recombination in Bacteria: Transformation biology, molecular mechanisms,	
transformation mapping, and other applications. Conjugation—F-factor, Hfr transfer, and	
mapping. Recombination in recipient cells, Rec mutants-properties, Rec protein and	
function.	

Unit-III	15 Hours
Phagegenetics: Phage genetic material, phage mutants. T4 phage and its life cycle.	
Genetic recombination and mapping in T4 phage Lambda phage-gene organization, lytic	
cycle,	
transcription, replication and recombination in lambdaphage and nonessential genes. Ly so geny-	
immunityandexcisionandothermodesoflysogeny.Lambdaphageand carcinogen screening.	
Finestructureanalysisofgene: One gene one enzyme hypothesis. Argenine biosynthesis	
in Neurospora, colinearity between gene and protein Tryptophan synthase gene in	
<i>E.Coli</i> .Genetic analysis of rII region of T4 phage and cistronconcept.	
Unit-IV	15 Hours
Geneticimprovementofindustrialmicroorganisms: Screening selection and genetic	
improvementofindustrialculture.Mutationandscreening-randomandrational screening.Use	
of recombinant DNA technology in SIP. Problem associated with SIOP. Improvement of	
character other than product.Importance of media in SIP.	
Industrialfermentation: Industrial fermentation and production of organic acids,	
aminoacids, antibiotics, alcohol, enzymes, polymers, biomass, solvents, steroids and vitamins.	
Recent advances in industrial products using microbes: Biosensors, biochips,	
biofertilizers, bioplastic and bioremediation, immobilized cells and enzymes.	

A3GEN002P: MICROBIAL GENETICS AND TECHNOLOGY (PRACTICAL)

Course No	Type of course	Practical/Theory	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
Course No 18	DSC 18	Practical	2	4	56	3	10	40	50

Total Hours: 56 hours

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: induce mutation and characterize mutants

CO2: to carry out the recombination in bacteria

CO3: to ferment the raw material to prepare value added products

- 1. Induction and characterization of mutants in bacteria.
- 2. UV-dose survival curve in bacteria.
- 3. Diauxic growth curve in bacteria
- 4. Conjugation in bacteria.
- 5. Isolation of plasmid.
- 6. Isolation of bacterial RNA
- 7. Transduction in bacteria
- 8. Microbial fermentation.
- 9. Isolation of DNA from Soil
- 10. Bacterial typing by 16s typing
- 11. Fungal typing by ITS sequences
- 12. Microbiological assay of vitamins.
- 13. Isolation of microbial lipids and transesterification.
- 14. Microbiological quality analysis of water

(New experiments may be introduced each year.)

- 1. Maylor, S.R., Cronan, J.E., Freifelder, D. (1994): Microbial Genetics 2nd Edn. Jones and Bartlett Pub. Boston.
- 2. Hayes, W. (1968): Genetics of bacteria and their viruses, 2nd Ed. John Wiley and Sons N.Y.
- 3. Dale.J.W.(1994):Moleculargeneticsofbacteria,2ndJohnWileyandSonsN.Y.
- 4. Synder, LandChampness, W. (1997): Moleculargenetics of bacteria ASMPress, Washinton.
- 5. Glazer, A.N., and Nikaido, H.(1995): Microbial Biotechnology, W.H. Freeman N.Y.
- 6. Stanbury, P.F. and Whitaker, A. (1984): Principles offermentation Technology, Pergamon Press Ltd. London.
- 7. Dale, J.W. (1994). Molecular genetics of bacteria, 2nd ed. John Wiley and Sons, N.Y.
- 8. Glazer, A.N., and Nikaido, H. (1995). *Microbial Biotechnology*, W.H. Freeman, N.Y.

A3GEN003T: HUMAN GENETICS AND GENETIC COUNSELLING (THEORY)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 19	Theory	4	4	60	2	20	80	100
No 19									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand the pattern of inheritance of genes and its effect on human health

CO2: have an insight of techniques used in disease diagnosis

CO3: understand the principles of genetic counselling

Syllabus course 19(Theory):HUMAN GENETICS AND GENETIC COUNSELLING	Total
	Hours: 60
Unit-I	15 Hours
Meaning and Scope of Human Genetics: Historical development of human genetics. Its	
relationship with other biological sciences and medicine.	
Patterns of Monogenic Inheritance: Pedigree construction, autosomal inheritance, sex-	
linked inheritance. Other modes of inheritance-mitochondrial genes, genomic	
imprinting, uniparental disomy.	
Patterns of Polygenic and Multifactorial Inheritance: Continuous and discontinuous	
traits, multifactorial threshold traits, pyloric stenosis, neural tube defect, congenital heart	
defects. Complex disorders of adult life.	
Unit-II	15 Hours
Human Cytogenetics: Normal human karyotype, sex chromosomes, chromosome	
preparation methods—leucocyte culture, bone marrow, solid tissue, testicular and ovarian	
biopsies. Chromosome banding methods and nomenclature of chromosome bands.	
Autosomal abnormalities-abnormalities of chromosome number and structure. Sex	
chromosomal abnormalities.	
Gene Mapping and Linkage Analysis: Physical mapping of human genes—somatic cell	
genetics, mapping by gene dosage, FISH, and high-resolution mapping approaches.	
Detection and measurement of linkage in humans.	
Unit-III	15 Hours

Biochemicalgenetics: Biochemical and molecular basis of human diseases. Inborn errors of metabolism- amino acid, carbohydrate and nucleic acid metabolisms. Haemoglobinopathies- globin gene mutation and genetic disorders. Lysosomal and other genetic disorders.	
clonalnature, oncogenes, tumor suppressorgenes. Familial cancer, cancer cytogenetics, chemical and radiation carcinogenesis.	
Unit-IV	15 Hours
AppliedHumanGenetics:Preventionandcureofhereditarydiseases:prenataldiagnosis and	
preimplantation diagnosis, amniocentesis, chorion villi sampling, ultrasonography,	
cytogenetic and biochemical analysis Genetic screening of hereditary diseases, gene therapy. DNA fingerprinting and paternity diagnosis. Eugenics.	
Molecular Diagnostics: Nucleic acid and Protein based Diagnostics, Genetic and Cytogenetic diagnostics, advantages, short comings and future perspectives	
GeneticCounseling: Meaning, Objectives and goals. Process of genetic counselling, diagnosis, family historycalculatingtherisk, discussing the options, genetic testing of children, carrier detection, ethical and legal aspects	

A3GEN003P: HUMAN GENETICS AND GENETIC COUNSELLING (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC20	Practical	2	4	56	3	10	40	50
No 20									

Course Outcomes: After successful completion of the course, the student will be able to,

- CO1: detect inborn errors of metabolism
- CO2: identify chromosomal defects in humans
- CO3: learn the methods of genetic counselling
 - 1. Detection of inborn errors of metabolism.
 - 2. Identification of ABO and Rh blood group alleles.
 - 3. Estimation of hemoglobin.
 - 4. Estimation of lipid profile (HDL, LDL, VLDL).
 - 5. Culture of human leucocytes and chromosomal preparations.
 - 6. Human karyotyping.
 - 7. Chromosomal abnormalities in some human syndromes.
 - 8. Cytogenetic characterization of cancerous cells.
 - 9. In vitro fertilization and embryo transfer (demonstration).
 - 10. Genetic counseling methods based on case history.
 - 11. Assessment of inheritance of quantitative characters.
 - 12. Study of sex chromatin in humans.
 - 13. Diagnosis of Human genetic diseases by PCR or RTPCR technique
 - 14. Diagnosis of Human infectious diseases by PCR or RTPCR technique

(New experiments may be introduced each year.)

- 1. Thompson, M.W., Mc.Innes, R.R., Willard, M.F. (1991), 5Edn W.B. Saundersand Co. London.
- 2. ISCN(1995):Aninternationalsystemforhumancytogeneticnomenclature.F. MitlemanKarger, Freiburg.
- 3. Mange, E.J. and Mange, A.P. (1999): Basic Human Genetics, 2Ed. Sinauer Assoc. Inc. Mass.
- 4. Pasternak, S. (2000): Introduction tomolecular human genetics, Fritzgarland.
- 5. Limoine, W.R.andCooperD.NB(1996): GeneTrophy, BiosScientificPub.Oxford.
- 6. Snustad, D.P., and Simmons, M.J. (2003): Principles of Genetics 3"ed. John Wiley and Sons Inc. N.Y.
- 7. Conner, J.M. and Smith, MAF (2000): Essential Medical Genetics Blackwell Sci. Pub. Oxford.
- 8. ISCN (1995). An international system for human cytogenetic nomenclature, F. Mitleman, Karger, Freiburg.
- 9. Mange, E.J. and Mange, A.P. (1999). *Basic Human Genetics*, 2nd ed. Sinauer Assoc. Inc. Mass.

10. Pasternak, S. (2000). Introduction to molecular human genetics, Fritzgarland.

A3GEN202P: MOLECULAR DIAGNOSIS AND MOLECULAR MEDICINE (THEORY)

Teaching Hours per Week: 4

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
OEC 2	OEC 2	Theory	4	4	60	2	20	80	100

Credits: 4

Total Hours: 60

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand the principles of molecular diagnostics

CO2: understand the principles of molecular medicine

CO3: learn the principles of transgenic animal use in health research

Syllabus OEC 2 (Theory):MOLECULAR DIAGNOSIS AND	Total Hours: 60
MOLECULAR MEDICINE	
Unit-I	15 Hours
Introduction to Molecular Basis of Diagnosis: Discovering human	
disease genes, cloning human disease genes. Functional and	
positional cloning of candidate genes.	
DNA Diagnostic Systems: Polymerase Chain Reaction (PCR)	
techniques, DNA, RNA, and Protein blotting, Reverse line blotting,	
Hybridization probes, non-radioactive hybridization procedures,	
molecular beacons, DNA fingerprinting, Single Nucleotide	
Polymorphisms (SNP), Restriction Fragment Length Polymorphisms	
(RFLP), Randomly Amplified Polymorphic DNA (RAPD), Padlock	
probes, genotyping with fluorescence-labeled PCR primers, DNA	
micro-array.	
Unit-II	15 Hours
Molecular Diagnosis of Genetic Disease: Direct detection of	
mutations in human disease genes-Single strand conformation,	
polymorphism analysis, Sensitive conformation gel electrophoresis,	

Denaturing Gradient Gel Electrophoresis, Heteroduplex analysis, Chemical mismatch cleavage, Direct DNA sequencing, Protein	
truncation test, Linkage analysis. Examples: Sickle Cell anemia,	
Hemophilia, etc.	
	1.7.1
Unit-III	15 Hours
Molecular Cytogenetics: Basic principles of FISH, steps in typical	
FISH procedure, signal amplification procedure, other systems of	
FISH: Comparative Genomic Hybridization (CGH), Molecular FISH,	
Primed in situ hybridization (PRINS), and in situ PCR.	
Applications of FISH: Probes hybridizing to unique sequences:	
Prader-Willi syndrome, Angelman syndrome, translocations. (Probes	
hybridizing to entire chromosomes): Chromosome painting,	
chromosome in situ suppression (CISS), reverse painting.	
Unit-IV	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine:Basic	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine:Biochemistry, Molecular Biology, and Genetics relevant to Molecular	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine:Biochemistry, Molecular Biology, and Genetics relevant to MolecularMedicine.	15 Hours
Unit-IV Concepts and Perspectives of Molecular Medicine: Basic Biochemistry, Molecular Biology, and Genetics relevant to Molecular Medicine.	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine: BasicBiochemistry, Molecular Biology, and Genetics relevant to MolecularMedicine.Human Genome: Implications and applications. Gene therapy as a	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine: BasicBiochemistry, Molecular Biology, and Genetics relevant to MolecularMedicine.Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine: BasicBiochemistry, Molecular Biology, and Genetics relevant to MolecularMedicine.Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in medicine.	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine: BasicBiochemistry, Molecular Biology, and Genetics relevant to MolecularMedicine.Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in medicine.	15 Hours
Unit-IVConcepts and Perspectives of Molecular Medicine: BasicBiochemistry, Molecular Biology, and Genetics relevant to MolecularMedicine.Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in medicine.Transgenic and Knockout Animal Models: Stem cell research and	15 Hours
 Unit-IV Concepts and Perspectives of Molecular Medicine: Basic Biochemistry, Molecular Biology, and Genetics relevant to Molecular Medicine. Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in medicine. Transgenic and Knockout Animal Models: Stem cell research and its application in human health. Intellectual Property Right (IPR) 	15 Hours
 Unit-IV Concepts and Perspectives of Molecular Medicine: Basic Biochemistry, Molecular Biology, and Genetics relevant to Molecular Medicine. Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in medicine. Transgenic and Knockout Animal Models: Stem cell research and its application in human health. Intellectual Property Right (IPR) issues and Ethical, Legal, and Social Issues (ELSI). 	15 Hours
 Unit-IV Concepts and Perspectives of Molecular Medicine: Basic Biochemistry, Molecular Biology, and Genetics relevant to Molecular Medicine. Human Genome: Implications and applications. Gene therapy as a potential tool to cure human diseases. Recombinant molecules in medicine. Transgenic and Knockout Animal Models: Stem cell research and its application in human health. Intellectual Property Right (IPR) issues and Ethical, Legal, and Social Issues (ELSI). 	15 Hours

- Gelehrter R.D., Collins F.S. and Ginsburg D. (1998) Principles of Medical Genetics, Baltimore, Williams and Wilkins
- 2. KingstonH.(1994)AnABCofClinicalGenetics,London,BMJpublishing.
- 3. Thompson M. and Mcinnes J. (1998) Genetics in Medicine, Philadelphia, Saunders
- 4. King R.A., Rotter J.I. and Motulsky A.G. (1992) The Genetic Basis of common diseases Oxford, Oxford University Press

- 5. Jameson, L.J. (ED)(1998) Principles of Molecular Medicine, New Jersey, Humana.
- 6. StrachanT.andReidA.P(1996)HumanMolecularGenetics,OxfordBios.
- Trent R.J., (1997) Molecular Medicine an Introductory Text. Edinburg Churchill Livingstone.
- 8. KrawczakM.andSchmidtkeJ.(1994)DNAFingerprinting,Oxford,Bios

FOURTH SEMESTER A4GEN001T: BIOINFORMATICS (THEORY)

Teaching Hours per Week: 4 Credits: 4

Course No	Type of course	Practical/Theory	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Duration of Exam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
Course 21	DSC 21	Theory	4	4	60	2	20	80	100

Total Hours: 60

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: know the biological databases and data retrieve principles

CO2: understand the principles multiple sequence alignment and sequence analysis

CO3: understand the concept of protein structure analysis

Syllabus course 21 (Theory):BIOINFORMATICS	Total Hours: 60
Unit-I	15 Hours
Information Theory and Biology: Concepts of probability, joint	
probability, conditional probability. Shannon Entropy and Information,	
Mutual information, Information theory, Bayes theorem, Markov chains,	
Hidden Markov Models, applications to DNA and protein sequences.	
Biological Databases: Introduction. Construction, file formats, contents,	
search and retrieval tools of various biological databases: GenBank,	
SwissProt, Protein Data Bank, PubMed, Online Mendelian Inheritance in	
Man, Species 2000, KEGG pathway database, Gene Expression Omnibus,	
Prosite, BLOCKS, Structural Classification of Proteins (SCOP) Database.	
Unit-II	15 Hours
Pairwise Sequence Alignment and Database Sequence Similarity	
Search: Meaning of sequence alignment, pairwise sequence alignment,	
Global alignment, Local alignment, Dynamic Programming Method,	
Needleman-Wunsch algorithm, Smith-Waterman algorithm, Substitution	
matrices—Unitary matrix, PAM, and BLOSUM matrices, Gap penalties,	
Evolutionary basis and significance of sequence alignment.	
Sequence Similarity Search Methods for DNA and protein sequences and	
their significance: a. FASTA—Algorithm. Parameters. Output. and	

interpretation of results, Versions of FASTA. b. BLAST-Parameters,	
Output, and interpretation of results, Versions of Algorithm, BLAST. c.	
PSI-BLAST and PHI-BLAST.	
Unit-III	15 Hours
Multiple Sequence Alignment: Meaning of Multiple Sequence Alignment,	
Global Multiple Sequence Alignment: Progressive Alignment method	
CLUSTALW. Local Multiple sequence Alignment: Profile Analysis, Block	
Analysis. Significance of Multiple Sequence Alignment. Multiple	
Sequence Alignment editors: JalView, GeneDoc, CLUSTALX, Boxshade.	
Molecular Phylogenetics: Meaning of phylogenetic analysis. Relationship	
between Multiple Sequence Alignment and Phylogenetic Analysis.	
Meaning and significance of evolutionary trees.	
Methods of phylogenetic prediction: Distance-based methods—Fitch-	
Margoliash method, Neighbor joining method, Unweighted Pair Group	
Method with Arithmetic Mean (UPGMA). Maximum Parsimony method,	
Maximum Likelihood method.Softwares used for Phylogenetic analysis-	
PHYLIP and PAUP.	
PHYLIP and PAUP. Unit-IV	15 Hours
PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases:	15 Hours
PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database,	15 Hours
PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, E. coli genome database.	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of comparative genomics. 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of comparative genomics. 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of comparative genomics. Protein Structure Prediction: Principle, salient features, and drawbacks 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of comparative genomics. Protein Structure Prediction: Principle, salient features, and drawbacks of methods of prediction of protein secondary structure: Chou-Fasman, GOD, DSU DDED, DDOE, DUD, D., Hind, S., Salient features, and drawbacks 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of comparative genomics. Protein Structure Prediction: Principle, salient features, and drawbacks of methods of prediction of protein secondary structure: Chou-Fasman, GOR, PSI-PRED, PROF, PHD. Prediction of tertiary structure of proteins: 	15 Hours
 PHYLIP and PAUP. Unit-IV Genome Databases and Genome Analysis: Genomic sequence databases: GOLD, human genome sequence database, Mouse Genome database, Arabidopsis genome resource, <i>E. coli</i> genome database. Genome Sequence Analysis: Principle, salient features, and drawbacks of methods of gene prediction/gene modeling: GRAIL, GENEMARK, GLIMMER. Promoter prediction methods.Salient features and drawbacks of methods of genome comparison: MUMMER. Significance of comparative genomics. Protein Structure Prediction: Principle, salient features, and drawbacks of methods of prediction of protein secondary structure: Chou-Fasman, GOR, PSI-PRED, PROF, PHD. Prediction of tertiary structure of proteins: Comparative protein modeling, threading, and ab initio structure prediction. 	15 Hours

Contact Hours per Week: 4 Credits: 2

Total Hours: 56 hours

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 22	Practical	2	4	56	3	10	40	50
No 22									

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Know the biological databases and data retrieve principles

CO2: understand the principles multiple sequence alignment and sequence analysis

CO3: Able to understand the concept of protein structure analysis

- 1. Literature database search: PubMed, Scopus, Web of Science and Cochrane database
- Database search and retrieval using keywords: GenBank, SwissProt, PDB, OMIM, KEGG, GEO, ProSite, GOLD.
- 3. Pairwise sequence alignment using GAP and SIM algorithms.
- 4. Sequence search and retrieval using BLAST.
- 5. Primer designing using primer 3
- 6. Sequence search and retrieval using FASTA.
- 7. Multiple sequence alignment using CLUSTALW.
- 8. Phylogenetic analysis using PHYLIP or PAUP.
- 9. Gene prediction using algorithms like GRAIL, GLIMMER, GENEMARK.
- 10. Genome comparison using MUMMER.
- 11. Protein structure prediction using algorithms like GOR, PSI-PRED, PROF, PHD.
- 12. Analysis of ligand binding pockets using online softwares
- 13. Prediction of ORF using online tools
- 14. Searching OMIM database

- 1. Durbin, Eddy, Krogh, and Mitchinson (2004): *Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids*. Allied Publishers.
- 2. Nucleic Acids Research, Database Issue, Oxford University Press.

3. David W. Mount (2005): *Bioinformatics Sequence and Genome Analysis*, 2nd Edition. Cold Spring Harbor Laboratory Press, USA / CBS Publishers, India.

A4GEN002T: IMMUNOGENETICS AND IMMUNOTECHNOLOGY (THEORY)

Teaching Hours per Week: 4 Credits: 4 Total Hours: 60

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Know the cells and organs of the immune system

CO2: understand the principles antigen-antibody interaction in health and disease

CO3: Able to understand the concept of protein structure analysis

Syllabus course 23(Theory): IMMUNOGENETICS AND	Total Hours:60
IMMUNOTECHNOLOGY	
Unit-I	15 Hours
Introduction: Phylogeny of immune system, innate and acquired	
immunity, clonal nature of immune response.	
Cells and Organs of Immune System: Hematopoiesis, immune system	
cells: lymphoid cells, mononuclear cells, granulocytic cells; organs of the	
immune system, primary and secondary lymphoid organs, B-Cell	
receptor.	
Antigens: Factors that influence immunogenicity, properties of B-cell	
epitope and T-cell epitope.	
Unit-II	15 Hours
Immunoglobulin Genes: Genetic model compatible with Ig structure,	
mutagenic organization of Ig genes, gene arrangements, generation of	
antibody diversity, expression of Ig genes, regulation of Ig gene	
transcription.	
Immune Response to Infectious Diseases: Viral, bacterial, and	
protozoan diseases. Autoimmunity. Immunodeficiency diseases:	
Phagocytic, humoral, cell-mediated, and combined immunodeficiency.	
Unit-III	15 Hours
Immune Systems and AIDS: The immune system in AIDS, HIV,	
diagnosis of HIV infection and AIDS, immunological abnormalities in	

AIDS, development of an AIDS vaccine.	
Transplantation Immunology : Immunological basis of graft rejection, MHC and HLA polymorphism tissue typing, general and specific immunosuppressive therapy.	
Cancer and Immune System: Tumors of the immune system, tumor	
antigens, immune response to tumors, cancer immunotherapy.	
Unit-IV	15 Hours
Immuna technology: Introduction production of polyalanal and	10 110 415
Initiatio-technology . Introduction, production of polycional and	
monocional antibodies, engineered antibodies, purification and	
fragmentation of immunoglobins; immunoprecipitation, labeling	
antibodies; immunoblotting and immunoassay; immunostaining,	
immunohistochemistry and immunocytochemistry.	
Stem cells:Introduction, types of stem cells, isolation/ culturing of stem	
cells and applications of stem cells.	
Regenerative medicine: Principles, procedure, applications, success stories and challenges in regenerative medicine. Ethical Issues associated with stem cell-based regenerative medicine field	

References:

15 Hours

- 1. Immunology, Janis Kuby, 3"ed. W.H.Freemanand Co., (1997)
- 2. KubyImmunololgy, 4h ed., R.A. Goldsby, Thomas. J. Kindt, Barbara A. Osborne (Freeman)
- 3. Immunology, A short Course, 4 ed, Eli Benjamin, Richard Coico, Geoffrey Sunshine (Wiley-Liss)
- 4. FundamentalsofImmunology,WilliamPaul.
- 5. ImmunologybyRoittandothers.
- 6. Gordon, J.R. (1998). A Practical Guide to Cellular and Molecular Methods in Immunology. Gordon Publishers.
- 7. Sell, S. ed., 2013. Stem cells handbook. Springer Science & Business Media.
- 8. Stocum, D.L., 2012. Regenerative biology and medicine. Academic Press.
- 9. Meyer, U., Meyer, T., Handschel, J. and Wiesmann, H.P. eds., 2009. Fundamentals of tissue engineering and regenerative medicine. Springer Science & Business Media.

A4GEN002P: IMMUNOGENETICS AND IMMUNOTECHNOLOGY (PRACTICAL)

Course	Type of	Practical/Theory	Credits	Instruction	Total No. of	Duration	Formative	Summative	Total
No	course			hour per	Lectures/Hours	of Exam	Assessment	Assessment	Marks
				week	/ Semester		Marks	Marks	
Course	DSC 24	Practical	2	4	56	3	10	40	50
No 24									

Total Hours: 56 hours

Course Outcomes: After successful completion of the course, the student will be able to,

- CO1: Immunization and collection of serum
- CO2: Purification of antibodies
- CO3: Isolation of PBCs and monocytes
 - 1. Blood film preparation and identification of cells.
 - 2. Lymphoid organs and their structured organization.
 - 3. Immunization of laboratotyanimalscollection of serum.
 - 4. Double diffusion and immuno-electrophoresis.
 - 5. Radial immunodiffusion.
 - 6. Purification of IgG from serum.
 - 7. Testing for Typhoid antigens by Widal test
 - 8. Separation of mononuclear cells by Ficoll-Hypaque method.
 - 9. Con-A induced proliferation of thymocytes (by MIT method).
 - 10. Western blotting of HIV samples (Demonstration)
 - 11. Detection of pathogens by byELISA.
 - 12. Isolation of pheripheral blood mononuclear cells.
 - 13. Isolation of monocytes from blood.
 - 14. Immunodiagnostics (demonstration using commercial kits).

(New experiments may be introduced each year.)

References:

1. Sam-Yellowe, T.Y., Sam-Yellowe, T.Y. and Sam-Yellowe, T., 2021. Immunology: Overview and laboratory manual (pp. 105-116). Switzerland: Springer.

- 2. Turgeon, M.L., 2020. Immunology & Serology in Laboratory Medicine-E-Book: Immunology & Serology in Laboratory Medicine-E-Book. Elsevier Health Sciences.
- 3. Immunology, JanisKuby, 3"ed. W.H.FreemanandCo., (1997)
- 4. KubyImmunololgy, 4h ed., R.A. Goldsby, Thomas. J. Kindt, Barbara A. Osborne (Freeman)
- 5. Immunology, A short Course, 4 ed, Eli Benjamin, Richard Coico, Geoffrey Sunshine (Wiley-Liss)
- 6. FundamentalsofImmunology,WilliamPaul.
- 7. ImmunologybyRoittandothers.
- 8. Gordon, J.R. (1998). A Practical Guide to Cellular and Molecular Methods in Immunology. Gordon Publishers.

A4GEN003T: GENETICS OF CROP IMPROVEMENT (THEORY)

Total Teaching Hours:60 Teaching hours per week:4 No. of credits:4

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: understand centres of origins of crop plants

CO2: understand plant propagation and breeding techniques

CO3: know the principles of transgenic plant production

Unit I

Introduction:Objectives of plant breeding, Activities in plant breeding. Centres of origin of crop plants, Germplasm conservation- in situ seed banks, plant banks, shoot tip banks, cell and organ banks, DNA banks, germplasm evaluation- cataloguing- multiplication and distribution

Plant introduction: History of plant introduction- primary and secondary, plant introduction agencies. Procedure of plant introduction –quarantine- cataloguing- evaluation – multiplication distribution – acclimatization, purpose of plant introduction, merits and demerits.

Mode of reproduction: Sexual Reproduction- Monoecious and dioecious plants, Floral Morphology, Pollination (self and cross), fertilization. Vegetative reproduction – different methods- grafting, layering, apomixis- classification with examples

15Hours

Unit II

Incompatibility: Definition, different types – self incompatibility- sporophytic homomorphic and heteromorphic incompatibility – gametophytic and incompatibility, mechanism of self incompatibility, pollen- stigma interaction, pollen tube -style interaction, pollen tube -ovary interaction –significance of self incompatibility, methods to overcome self incompatibility- bud pollination, surgical methods and off season pollination, high temperature, irradiation

Sterility: male sterility – genetic male sterility - cytoplasmic male sterility – cytoplasmic genetic male sterility, application in crop improvement

Selection: History of selection, purelineselection, mass selection, pedigree selection, bulk method of selection, merits and demerits.

Selection by Back Crossing: Introduction, requirements, applications of back cross methods, Consequences of backcross, procedure of back cross method - transfer of a dominant gene, transfer of a recessive gene, selection of the characters being transferred, transfer of quantitative characters.

15Hours

Unit III

Plant Breeding: Breeding for Designer oils and biodiesel, plant secondary products, designer flowers,

plants as bioreactors, vaccines, plantibodies, and bioplastics. Using molecular biology to probe plant physiological processes- prospects of engineering RUBISCO and nitrogenfixation

Hybridization:History , techniques and consequences, objectives , types of hybridization – interspecific, intergeneric, distant hybridization, procedure of hybridization, choice of parents, evaluation of parents, emasculation – different methods, bagging, tagging, pollination , harvesting and storing of the F1 seeds and selfing, consequences of hybridization.

15Hours

Unit IV

Methods of gene transfer to plants: Protoplast fusion, organelle engineering. Recombinant vector techniques: Non-integrative DNA transfer- Caulimoviruses, Geminiviruses, plant RNA viruses, Cornybacterial plasmids. Integrative DNA transfer- Agrobacterium Ti and Ri plasmids, Agroinfection, homologous DNA and transposons as vector.

Transgenics: First commercial transgenic plants- transgenic tomatoes, control of ripening by antisense technology, insect resistance (Bt. protein), golden rice, herbicide resistance.

Genome Editing: Crop improvement by Homologous Recombination, CRISPR/Cas9 Tools, Transcription activator-like effectors nucleases (TALENs), Virus-Induced Gene Silencing (VIGS), Zinc finger nucleases (ZFNs), Base Editors and Pentatricopeptide Repeat Proteins.

15Hours

- 1. Chopra, V. L. 2000. Plant Breeding. Theory and Practicals edition), Oxford& IBH Publ. Co. Pvt.. Ltd., New Delhi.
- 2. Frankel, R &Galum, E.1977. Pollination Mechanisms, Reproduction and Plant Breeding. Springer-Verlag, Berlin/ Heidelberg/ NewYork.
- 3. Jain H.K. &Kharkwal, M.C. (Eds.) 2004. Plant Breeding: Mendelian to Molecular Approaches.-. Narosa Publishing. House, New Delhi, Chennai, Mumbai, Calcutta.
- 4. Poehlman, J.M & David.A.S.1995. Field Crops (4th edition). Panima Publ. Co., New Delhi/ Bangalore.
- Poehlman, J.M. & Borthakur, D. 1959. Breeding Asian Field Crops with Special Reference to Crops of India. Oxford & IBH Publishing Co. New Delhi, Bombay, Calcutta.
- 6. Jain, S.M., Brar, D.S. and Ahloowalia, B.S. eds., 2010. Molecular techniques in crop improvement. Dordrecht, TheNetherlands:: Springer.
- 7. Upadhyay, S.K. ed., 2021. Genome engineering for crop improvement (pp. 1-394). Wiley.
- 8. Slafer, G. A. (2021). Genetic improvement of field crops. CRC Press.
- 9. Al-Khayri, J. M., Sattar, M. N., Sopory, S. K., & Jain, S. M. (Eds.). (2024). Genome Editing for Crop Improvement: Theory and Methodology.
- 10. Pazhamala, L. T., Kudapa, H., Weckwerth, W., Millar, A. H., & Varshney, R. K. (2021). Systems biology for crop improvement. The plant genome, 14(2), e20098.

A4GEN003P: GENETICS OF CROP IMPROVEMENT (PRACTICAL)

Contact Hours per Week: 4 Credits: 2 Total Hours: 56 hours

Course Outcomes: After successful completion of the course, the student will be able to,

CO1: Perform the techniques in plant propagation

- CO2: Perform the techniques in plant breeding
- CO3: learn the basics of transgenic creation
- 1. Multiplication of plants by gooting
- 2. Multiplication of plants by shoot cutting, suckers and runners
- 3. Grafting for plant propagation
- 4. Budding for plant propagation
- 5. Shoot tip culture
- 6. Sterilization techniques- Emasculation
- 7. Pollen collection and germination
- 8. Pollen viability test
- 9. Demonstration of pollination (self and cross)
- 10. Isolation of plant DNA
- 11. Detection transgenic gene in plants
- 12. Detection of Bt Protein in cotton
- 13. Isolation of nif genes
- 14. Agrobacterium mediated transformation in plants

(New experiments may be introduced each year.)

- 11. Jain, S.M., Brar, D.S. and Ahloowalia, B.S. eds., 2010. Molecular techniques in crop improvement. Dordrecht, TheNetherlands:: Springer.
- 12. Upadhyay, S.K. ed., 2021. Genome engineering for crop improvement (pp. 1-394). Wiley.
- 13. Slafer, G. A. (2021). Genetic improvement of field crops. CRC Press.
- 14. Al-Khayri, J. M., Sattar, M. N., Sopory, S. K., & Jain, S. M. (Eds.). (2024). Genome Editing for Crop Improvement: Theory and Methodology.
- 15. Pazhamala, L. T., Kudapa, H., Weckwerth, W., Millar, A. H., & Varshney, R. K. (2021). Systems biology for crop improvement. The plant genome, 14(2), e20098.
- 16. Allard, R.W.1960. Principles of Plant Breeding. John Wiley & Sons. Inc. New

York. Backcock., E.B. 2001

- 17. Genetics and Plant breeding. Agrobios (India), Jodhpur
- Basra, A. S.2000.Heterosis and hybrid seed production In Agronomic Crops (Basra, A.S. Ed.). M.S. Swaminathan Research Foundation, Taraman Industrial Area, Chennai.
- 19. Bose, T.K., Mitra S.K. & Sadhu, M.K.1986. Propagation of Tropical and Subtropical Horticultural Crops. Naya Prakash, Calcutta.
- 20. Briggs, F.N& Knowles, P.F 1967. Introduction to Plant Breeding. Reinhold Publ. Co., New York/ Amsterdam/ London.

A4GEN004P: PROJECT WORK

• Students will be able to search the literature and identify the research gapto select the research problem.

Students will be able to frame the objectives to address the problem identified

• They will be learning to adopt/ develop the experimental procedure suitable for their laboratory setup and infrastructure

• Students will develop observation, data analysisand interpretation skills to approach the research solutions

• They will be able to write the scientific reports and present in appropriate scientific meetings.

• Student will able to prepare the manuscript and publish their research findings the journals of National/International repute.

Students will be working under the guidance of suitable and qualified research supervisor for the period of a semester (IV semester). The project work also may be allotted to the students in previous semesters as per the necessity with respect to time required and complexity of the research problem